Spaces:
Sleeping
Sleeping
File size: 8,136 Bytes
7270996 e05a1b1 7270996 b3b4ade 7270996 b3b4ade 7270996 b3b4ade 7270996 2e80290 7270996 dabe03d 2e80290 b3b4ade 7270996 2e80290 7270996 2e80290 7270996 2e80290 7270996 2e80290 7270996 e3946f8 7270996 2e80290 7270996 331f8b8 7270996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import numpy as np
import pandas as pd
import datasets
import streamlit as st
from streamlit_cytoscapejs import st_cytoscapejs
import networkx as nx
st.set_page_config(layout='wide')
# parse out gene_ids from URL query args to it's possible to link to this page
query_params = st.query_params
if "gene_ids" in query_params.keys():
input_gene_ids = query_params["gene_ids"]
else:
input_gene_ids = "CNAG_04365,CNAG_06468"
# use "\n" as the separator so it shows correctly in the text area
input_gene_ids = input_gene_ids.replace(",", "\n")
if "coexp_score_threshold" in query_params.keys():
coexp_score_threshold = query_params["coexp_score_threshold"]
else:
coexp_score_threshold = "0.85"
if "max_per_gene" in query_params.keys():
max_per_gene = query_params["max_per_gene"]
else:
max_per_gene = "25"
st.markdown("""
# CryptoCEN Network
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
O'Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, A Alspaugh JA, O'Meara TR
CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair.
PLoS Genet 20(2): e1011158. (2024) https://doi.org/10.1371/journal.pgen.1011158
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
## Plot a network for a set of genes
Put a ``CNAG_#####`` gene_id, one one each row to seed the network
""")
h99_transcript_annotations = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"})
h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas()
top_coexp_hits = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"top_coexp_hits": "top_coexp_hits.tsv"})
top_coexp_hits = top_coexp_hits["top_coexp_hits"].to_pandas()
col1, col2, col3 = st.columns(spec = [0.3, 0.2, 0.5])
with col1:
input_gene_ids = st.text_area(
label = "Gene IDs",
value = f"{input_gene_ids}",
height = 130,
help = "CNAG Gene ID e.g. CNAG_04365")
with col2:
coexp_score_threshold = st.text_input(
label = "Co-expression threshold [0-1]",
value = f"{coexp_score_threshold}",
help = "Default: 0.85")
try:
coexp_score_threshold = float(coexp_score_threshold)
except:
st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")
if coexp_score_threshold < 0 or 1 < coexp_score_threshold:
st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")
max_per_gene = st.text_input(
label = "Max per gene",
value = f"{max_per_gene}",
help = "Default: 25")
try:
max_per_gene = int(max_per_gene)
except:
st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
if max_per_gene <= 0:
st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
##################################
# Parse and check the user input #
##################################
seed_gene_ids = []
for input_gene_id in input_gene_ids.split("\n"):
gene_id = input_gene_id.strip()
if gene_id == "":
continue
else:
seed_gene_ids.append(gene_id)
neighbors = []
for seed_gene_id in seed_gene_ids:
hits = top_coexp_hits[
(top_coexp_hits.gene_id_1 == seed_gene_id) & (top_coexp_hits.coexp_score > coexp_score_threshold)]
if len(hits.index) > max_per_gene:
hits = hits[0:max_per_gene]
neighbors.append(hits)
neighbors = pd.concat(neighbors)
neighbor_gene_ids = list(set(neighbors.gene_id_2))
gene_ids = seed_gene_ids + neighbor_gene_ids
gene_types = ['seed'] * len(seed_gene_ids) + ['neighbor'] * len(neighbor_gene_ids)
cnag_ids = []
gene_products = []
descriptions = []
for gene_id in gene_ids:
try:
cnag_id = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["cnag_id"].values[0]
gene_product = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["gene_product"].values[0]
description = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["description"].values[0]
except:
st.error(f"Unable to locate cnag_id for Gene ID: '{gene_id}', it should be of the form 'cnag_#####'")
cnag_id = None
gene_product = None
description = None
cnag_ids.append(cnag_id)
gene_products.append(gene_product)
descriptions.append(description)
node_info = pd.DataFrame({
"gene_index": range(len(gene_ids)),
"gene_id" : gene_ids,
"gene_type" : gene_types,
"cnag_id": cnag_ids,
"gene_product": gene_products,
"description": description})
neighbors = neighbors.merge(
right = node_info,
left_on = "gene_id_1",
right_on = "gene_id")
neighbors = neighbors.merge(
right = node_info,
left_on = "gene_id_2",
right_on = "gene_id",
suffixes = ("_a", "_b"))
################################
# Use NetworkX to layout graph #
################################
# note I think CytoscapeJS can layout graphs
# but I'm unsure how to do it through the streamlit-cytoscapejs interface :(
st.write(neighbors)
G = nx.Graph()
for i in range(len(neighbors.index)):
edge = neighbors.iloc[i]
G.add_edge(
edge["gene_index_a"],
edge["gene_index_b"],
weight = edge["coexp_score"])
layout = nx.spring_layout(G)
node_color_lut = {
"seed" : "#4866F0", # blue
"neighbor" : "#F0C547" # gold
}
elements = []
singleton_index = 0
for i in range(len(node_info.index)):
node = node_info.iloc[i]
if node["gene_index"] in layout.keys():
layout_x = layout[node["gene_index"]][0] * 600 + 1500/2
layout_y = layout[node["gene_index"]][1] * 600 + 1500/2
else:
layout_x = (singleton_index % 8) * 150 + 100
layout_y = np.floor(singleton_index / 8) * 50 + 30
singleton_index += 1
elements.append({
"data": {
"id": node["gene_id"],
"label": node["gene_product"] if node["gene_product"] is not None else node["gene_id"],
"color": node_color_lut[node["gene_type"]]},
"position": {
"x" : layout_x,
"y" : layout_y}})
for i in range(len(neighbors.index)):
edge = neighbors.iloc[i]
elements.append({
"data" : {
"source" : edge["gene_id_1"],
"target" : edge["gene_id_2"],
"width" :
20 if edge["coexp_score"] > 0.99 else
15 if edge["coexp_score"] > 0.96 else
10 if edge["coexp_score"] > 0.94 else
8 if edge["coexp_score"] > 0.89 else
5}})
with col3:
st.text('') # help alignment with input box
st.download_button(
label = "Download as as TSV",
data = neighbors.to_csv(sep ='\t').encode('utf-8'),
file_name = f"CryptoCEN_network.tsv",
mime = "text/csv")
##########################################################
stylesheet = [
{"selector": "node", "style": {
"width": 140,
"height": 30,
"shape": "rectangle",
"label" : "data(label)",
"labelFontSize": 100,
'background-color': 'data(color)',
"text-halign": "center",
"text-valign": "center",
}},
{"selector": "edge", "style": {
"width": "data(width)"
}}
]
st.title("ToxoCEN Network")
clicked_elements = st_cytoscapejs(
elements = elements,
stylesheet = stylesheet,
width = 1000,
height= 1000,
key = "1")
|