File size: 8,136 Bytes
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05a1b1
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3b4ade
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
b3b4ade
7270996
b3b4ade
 
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e80290
7270996
 
 
 
dabe03d
2e80290
b3b4ade
7270996
2e80290
7270996
2e80290
7270996
 
 
2e80290
7270996
 
 
 
 
 
 
2e80290
7270996
 
 
 
 
 
 
 
 
 
 
 
 
e3946f8
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e80290
7270996
 
 
 
 
 
 
 
 
 
 
 
331f8b8
 
 
 
7270996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

import numpy as np
import pandas as pd
import datasets
import streamlit as st
from streamlit_cytoscapejs import st_cytoscapejs
import networkx as nx

st.set_page_config(layout='wide')

# parse out gene_ids from URL query args to it's possible to link to this page
query_params = st.query_params
if "gene_ids" in query_params.keys():
    input_gene_ids = query_params["gene_ids"]
else:
    input_gene_ids = "CNAG_04365,CNAG_06468"
    
# use "\n" as the separator so it shows correctly in the text area
input_gene_ids = input_gene_ids.replace(",", "\n")

if "coexp_score_threshold" in query_params.keys():
    coexp_score_threshold = query_params["coexp_score_threshold"]        
else:
    coexp_score_threshold = "0.85"

if "max_per_gene" in query_params.keys():
    max_per_gene = query_params["max_per_gene"]        
else:
    max_per_gene = "25"

st.markdown("""
# CryptoCEN Network
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes. 
To Cite:
    O'Meara MJ, Rapala JR, Nichols CB, Alexandre C, Billmyre RB, Steenwyk JL, A Alspaugh JA, O'Meara TR
    CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair.
    PLoS Genet 20(2): e1011158. (2024) https://doi.org/10.1371/journal.pgen.1011158
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
## Plot a network for a set of genes
Put a ``CNAG_#####`` gene_id, one one each row to seed the network
""")


h99_transcript_annotations = datasets.load_dataset(
    path = "maomlab/CryptoCEN",
    data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"})
h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas()

top_coexp_hits = datasets.load_dataset(
    path = "maomlab/CryptoCEN",
    data_files = {"top_coexp_hits": "top_coexp_hits.tsv"})
top_coexp_hits = top_coexp_hits["top_coexp_hits"].to_pandas()


col1, col2, col3 = st.columns(spec = [0.3, 0.2, 0.5])
with col1:
    input_gene_ids = st.text_area(
        label = "Gene IDs",
        value = f"{input_gene_ids}",
        height = 130,
        help = "CNAG Gene ID e.g. CNAG_04365")


with col2:
    coexp_score_threshold = st.text_input(
        label = "Co-expression threshold [0-1]",
        value = f"{coexp_score_threshold}",
        help = "Default: 0.85")

    try:
        coexp_score_threshold = float(coexp_score_threshold)
    except:
        st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")
    if coexp_score_threshold < 0 or 1 < coexp_score_threshold:
        st.error(f"Co-expression threshold should be a number between 0 and 1, instead it is '{coexp_score_threshold}'")

    max_per_gene = st.text_input(
        label = "Max per gene",
        value = f"{max_per_gene}",
        help = "Default: 25")

    try:
        max_per_gene = int(max_per_gene)
    except:
        st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
    if max_per_gene <= 0:
        st.error(f"Max per gene should be a number greater than 0, instead it is '{max_per_gene}'")
    
    
##################################
# Parse and check the user input #
##################################

seed_gene_ids = []
for input_gene_id in input_gene_ids.split("\n"):
    gene_id = input_gene_id.strip()
    if gene_id == "":
        continue
    else:
        seed_gene_ids.append(gene_id)

neighbors = []
for seed_gene_id in seed_gene_ids:
    hits = top_coexp_hits[
            (top_coexp_hits.gene_id_1 == seed_gene_id) & (top_coexp_hits.coexp_score > coexp_score_threshold)]
    if len(hits.index) > max_per_gene:
        hits = hits[0:max_per_gene]
    neighbors.append(hits)

neighbors = pd.concat(neighbors)
    
neighbor_gene_ids = list(set(neighbors.gene_id_2))
gene_ids = seed_gene_ids + neighbor_gene_ids
gene_types = ['seed'] * len(seed_gene_ids) + ['neighbor'] * len(neighbor_gene_ids)

cnag_ids = []
gene_products = []
descriptions = []
    
for gene_id in gene_ids:
    try:
        cnag_id = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["cnag_id"].values[0]
        gene_product = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["gene_product"].values[0]
        description = h99_transcript_annotations.loc[h99_transcript_annotations["gene_id"] == gene_id]["description"].values[0]
    except:
        st.error(f"Unable to locate cnag_id for Gene ID: '{gene_id}', it should be of the form 'cnag_#####'")
        cnag_id = None
        gene_product = None
        description = None

    cnag_ids.append(cnag_id)
    gene_products.append(gene_product)
    descriptions.append(description)

node_info = pd.DataFrame({
    "gene_index": range(len(gene_ids)),
    "gene_id" : gene_ids,
    "gene_type" : gene_types,
    "cnag_id": cnag_ids,
    "gene_product": gene_products,
    "description": description})

neighbors = neighbors.merge(
    right = node_info,
    left_on = "gene_id_1",
    right_on = "gene_id")

neighbors = neighbors.merge(
    right = node_info,
    left_on = "gene_id_2",
    right_on = "gene_id",
    suffixes = ("_a", "_b"))


################################
# Use NetworkX to layout graph #
################################
# note I think CytoscapeJS can layout graphs
# but I'm unsure how to do it through the streamlit-cytoscapejs interface :(

st.write(neighbors)


G = nx.Graph()
for i in range(len(neighbors.index)):
    edge = neighbors.iloc[i]
    G.add_edge(
        edge["gene_index_a"],
        edge["gene_index_b"],
        weight = edge["coexp_score"])
layout = nx.spring_layout(G)




node_color_lut = {
    "seed" : "#4866F0",    # blue
    "neighbor" : "#F0C547" # gold
}

elements = []
singleton_index = 0
for i in range(len(node_info.index)):
    node = node_info.iloc[i]

    if node["gene_index"] in layout.keys():
        layout_x = layout[node["gene_index"]][0] * 600 + 1500/2
        layout_y = layout[node["gene_index"]][1] * 600 + 1500/2
    else:
        layout_x = (singleton_index % 8) * 150 + 100
        layout_y = np.floor(singleton_index / 8) * 50 + 30
        singleton_index += 1

    
    elements.append({
        "data": {
            "id": node["gene_id"],
            "label": node["gene_product"] if node["gene_product"] is not None else node["gene_id"],
            "color": node_color_lut[node["gene_type"]]},
        "position": {
            "x" : layout_x,
            "y" : layout_y}})

for i in range(len(neighbors.index)):
    edge = neighbors.iloc[i]
    elements.append({
        "data" : {
            "source" : edge["gene_id_1"],
            "target" : edge["gene_id_2"],
            "width" :
                20 if edge["coexp_score"] > 0.99 else
                15 if edge["coexp_score"] > 0.96 else
                10 if edge["coexp_score"] > 0.94 else
                8  if edge["coexp_score"] > 0.89 else
                5}})

with col3:
    st.text('') # help alignment with input box
    st.download_button(
        label = "Download as as TSV",
        data = neighbors.to_csv(sep ='\t').encode('utf-8'),
        file_name = f"CryptoCEN_network.tsv",
        mime = "text/csv")

##########################################################

stylesheet = [
    {"selector": "node", "style": {
        "width": 140,
        "height": 30,
        "shape": "rectangle",
        "label" : "data(label)",
        "labelFontSize": 100,
        'background-color': 'data(color)',
        "text-halign": "center",
        "text-valign": "center",
    }},
    {"selector": "edge", "style": {
        "width": "data(width)"
    }}
]

st.title("ToxoCEN Network")
clicked_elements = st_cytoscapejs(
    elements = elements,
    stylesheet = stylesheet,
    width = 1000,
    height= 1000,
    key = "1")