Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,21 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 4 |
-
from huggingface_hub import login
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
from docx import Document
|
| 7 |
import csv
|
| 8 |
import json
|
| 9 |
import os
|
| 10 |
import torch
|
| 11 |
-
from langchain.document_loaders import JSONLoader
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 14 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Cargar el modelo y el pipeline de Hugging Face
|
| 17 |
@st.cache_resource
|
|
@@ -54,7 +58,7 @@ def create_vector_store():
|
|
| 54 |
vector_stores = {}
|
| 55 |
for category, docs in json_documents.items():
|
| 56 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
| 57 |
-
split_docs =
|
| 58 |
vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
|
| 59 |
return vector_stores
|
| 60 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
|
|
|
|
|
|
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
from docx import Document
|
| 5 |
import csv
|
| 6 |
import json
|
| 7 |
import os
|
| 8 |
import torch
|
|
|
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 11 |
from langchain.vectorstores import FAISS
|
| 12 |
+
from huggingface_hub import login
|
| 13 |
+
|
| 14 |
+
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
| 15 |
+
|
| 16 |
+
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
|
| 17 |
+
if huggingface_token:
|
| 18 |
+
login(token=huggingface_token)
|
| 19 |
|
| 20 |
# Cargar el modelo y el pipeline de Hugging Face
|
| 21 |
@st.cache_resource
|
|
|
|
| 58 |
vector_stores = {}
|
| 59 |
for category, docs in json_documents.items():
|
| 60 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
| 61 |
+
split_docs = text_splitter.split_text(docs)
|
| 62 |
vector_stores[category] = FAISS.from_texts(split_docs, embeddings)
|
| 63 |
return vector_stores
|
| 64 |
|