--- title: DINOv3 Web/Sat Interactive Similarity emoji: 🦖 colorFrom: yellow colorTo: gray sdk: gradio sdk_version: 5.43.1 app_file: app.py pinned: false license: mit short_description: Visualize image patch similarity like in DINOv3 presentation --- # DINOv3 Patch Similarity Viewer [Github Repo](https://github.com/devMuniz02/DINOv3-Interactive-Patch-Cosine-Similarity) ![Gradio Test app](assets/GradioAppTest.gif) > **Note:** This README and repository are for educational purposes. The creation of this repo was inspired by the DINOv3 paper to help visualize and understand the output of the model. ## Purpose This repository provides interactive tools to visualize and explore patch-wise similarity in images using the DINOv3 vision transformer model. It is designed for researchers, students, and practitioners interested in understanding how self-supervised vision transformers perceive and relate different regions of an image. ## About DINOv3 - **Paper:** [DINOv3: Self-supervised Vision Transformers with Enormous Teacher Models](https://arxiv.org/abs/2508.10104) - **Meta Research Page:** [Meta DINOv3 Publication](https://ai.meta.com/dinov3/) - **Official GitHub:** [facebookresearch/dinov3](https://github.com/facebookresearch/dinov3) **Note:** The DINOv3 model weights require access approval. You can request access via the [Meta Research page](https://ai.meta.com/resources/models-and-libraries/dinov3-downloads/) or by selecting the desired model on [Hugging Face model collection](https://huggingface.co/collections/facebook/dinov3-68924841bd6b561778e31009). ## Features - **Interactive Visualization:** Click on image patches or use arrow keys to explore patch similarity heatmaps. - **Single or Two-Image Mode:** If one image is specified, shows self-similarity. If two images are specified, shows both self-similarity and cross-image similarity overlays interactively. - **Image Preprocessing:** Loads and pads images without resizing, preserving the original aspect ratio. - **Cosine Similarity Calculation:** Computes and visualizes cosine similarity between image patches. - **Robust Fallback:** If an image URL fails to load, a default image is used. ## Installation Install dependencies with: ```bash pip install -r requirements.txt ``` ## Model Selection You can choose from several DINOv3 models available on Hugging Face (click to view each model card): LVD-1689M Dataset (Web data) - ViT - [facebook/dinov3-vit7b16-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vit7b16-pretrain-lvd1689m) - [facebook/dinov3-vits16-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vits16-pretrain-lvd1689m) - [facebook/dinov3-vits16plus-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vits16plus-pretrain-lvd1689m) - [facebook/dinov3-vitb16-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vitb16-pretrain-lvd1689m) - [facebook/dinov3-vitl16-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vitl16-pretrain-lvd1689m) - [facebook/dinov3-vith16plus-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-vith16plus-pretrain-lvd1689m) - ConvNeXt - [facebook/dinov3-convnext-tiny-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-convnext-tiny-pretrain-lvd1689m) - [facebook/dinov3-convnext-small-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-convnext-small-pretrain-lvd1689m) - [facebook/dinov3-convnext-base-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-convnext-base-pretrain-lvd1689m) - [facebook/dinov3-convnext-large-pretrain-lvd1689m](https://huggingface.co/facebook/dinov3-convnext-large-pretrain-lvd1689m) SAT-493M Dataset (Satellite data) - ViT - [facebook/dinov3-vitl16-pretrain-sat493m](https://huggingface.co/facebook/dinov3-vitl16-pretrain-sat493m) - [facebook/dinov3-vit7b16-pretrain-sat493m](https://huggingface.co/facebook/dinov3-vit7b16-pretrain-sat493m) ## Usage ### Gradio app Run the Gradio app: ```bash python app.py ``` After runnig the app, go to [http://localhost:7860/](http://localhost:7860/) to see the app running. Then: - Choose Dataset and model name - For Single image similarity: - Choose only one file or URL - For 2 image similarity: - Choose images from file and/or URL - Click button "Initialize / Update " - Select the desired patch from the image - Watch the results **Note:** *Overlay alpha* is the intensity of the overlay of patches on top of image ### Python Script Run the interactive viewer with the default COCO image: ```bash python DINOv3CosSimilarity.py ``` #### Single Image Mode Specify your own image (local path or URL): ```bash python DINOv3CosSimilarity.py --image path/to/your/image.jpg python DINOv3CosSimilarity.py --image https://yourdomain.com/image.png ``` #### Two Image Mode Specify two images (local paths or URLs): ```bash python DINOv3CosSimilarity.py --image1 path/to/image1.jpg --image2 path/to/image2.jpg python DINOv3CosSimilarity.py --image1 https://yourdomain.com/image1.png --image2 https://yourdomain.com/image2.png ``` #### Model Selection Specify the model with `--model` (default is vits16): ```bash python DINOv3CosSimilarity.py --model facebook/dinov3-vitb16-pretrain-lvd1689m ``` #### Other Options - `--show_grid` : Draw patch grid - `--annotate_indices` : Write patch indices on cells - `--overlay_alpha ` : Set heatmap alpha (default 0.55) - `--patch_size ` : Override patch size (default: model's patch size) #### Controls - Mouse click to select a patch - Arrow keys to move selection - '1', '2', or 't' to switch active image (in two-image mode) - 'q' to quit ## Demo Single Image ![Interactive Patch Similarity Demo](assets/Test_Interactive_video.gif) ## Demo 2 Images ![Multiple Interactive Patch Similarity Demo](assets/Multiple_Interactive_test_video.gif) ### Jupyter Notebook 1. Open `PatchCosSimilarity.ipynb` in Jupyter Notebook. 2. Run the cells to load an image and visualize patch similarities. 3. Set `url1` for single-image mode, or both `url1` and `url2` for two-image mode. 4. If an image fails to load, a default image will be used automatically. 5. Set the `model_id` variable to any of the models listed above (see commented lines at the top of the notebook). **Notebook Controls:** - Mouse click to select a patch - Arrow keys to move selection - '1', '2', or 't' to switch active image (in two-image mode) ## License This project is licensed under the MIT License. See the `LICENSE` file for details. ## Acknowledgments This project utilizes the DINOv3 model from Hugging Face's Transformers library, along with PyTorch, Matplotlib, and Pillow