File size: 27,634 Bytes
faca9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# app.py
# Gradio UI for interactive DINOv3 patch similarity (single or dual image)
# - No AutoImageProcessor, no resize (only pad to multiple of patch size)
# - Single image: click to show self-similarity; selected cell outlined in RED
# - Two images: click on one side -> self overlay on source, cross overlay on target; best match on target outlined in YELLOW
# - Red selection rectangle is hidden on the non-active image
# - Patch size inferred from model (no override). Patch indices are not annotated.
# - Dataset selector (LVD-1689M / SAT-493M); model dropdown shows only the short name between "dinov3-" and "-pretrain".
# - Sample URL dropdowns switch between LVD (COCO/Picsum) and SAT (satellite imagery) and auto-fill / clear uploads.
import io
import math
import urllib.request
from functools import lru_cache
from typing import Optional, Tuple, Dict, List
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
from torchvision import transforms
from transformers import AutoModel
from matplotlib import colormaps as cm
# ---------- Provided model IDs (ground truth list) ----------
MODEL_ID_LIST = [
"facebook/dinov3-vits16-pretrain-lvd1689m",
"facebook/dinov3-vits16plus-pretrain-lvd1689m",
"facebook/dinov3-vitb16-pretrain-lvd1689m",
"facebook/dinov3-vitl16-pretrain-lvd1689m",
"facebook/dinov3-vith16plus-pretrain-lvd1689m",
"facebook/dinov3-vit7b16-pretrain-lvd1689m",
"facebook/dinov3-convnext-tiny-pretrain-lvd1689m",
"facebook/dinov3-convnext-small-pretrain-lvd1689m",
"facebook/dinov3-convnext-base-pretrain-lvd1689m",
"facebook/dinov3-convnext-large-pretrain-lvd1689m",
"facebook/dinov3-vitl16-pretrain-sat493m",
"facebook/dinov3-vit7b16-pretrain-sat493m",
]
DATASET_LABELS = {
"LVD-1689M": "lvd1689m",
"SAT-493M": "sat493m",
}
def build_model_maps(model_ids: List[str]):
"""
Returns:
valid_map[(dataset_key, short_name)] -> full_model_id
options_by_dataset[dataset_key] -> [short_name,...] (display order preserved)
"""
valid_map: Dict[Tuple[str, str], str] = {}
options_by_dataset: Dict[str, List[str]] = {"lvd1689m": [], "sat493m": []}
for mid in model_ids:
# Expect pattern: "facebook/dinov3-<short>-pretrain-<dataset>"
try:
prefix = "facebook/dinov3-"
start = mid.index(prefix) + len(prefix)
pre_idx = mid.index("-pretrain", start)
short = mid[start:pre_idx]
dataset = mid.split("-pretrain-")[-1].strip()
except Exception:
# Skip anything that doesn't match the expected pattern
continue
key = (dataset, short)
valid_map[key] = mid
if dataset in options_by_dataset and short not in options_by_dataset[dataset]:
options_by_dataset[dataset].append(short)
return valid_map, options_by_dataset
VALID_MODEL_MAP, MODEL_OPTIONS_BY_DATASET = build_model_maps(MODEL_ID_LIST)
# ---------- Defaults / knobs ----------
DEFAULT_URL = "http://images.cocodataset.org/val2017/000000039769.jpg"
DEFAULT_DATASET_LABEL = "LVD-1689M" # initial radio
DEFAULT_OVERLAY_ALPHA = 0.55
DEFAULT_SHOW_GRID = True
# ---------- Sample image URLs (dependent on dataset) ----------
SAMPLE_URL_CHOICES: Dict[str, List[Tuple[str, str]]] = {
# LVD: current ones
"lvd1689m": [
("– choose a sample –", ""),
("COCO: 2 Cats on sofa (039769)", "http://images.cocodataset.org/val2017/000000039769.jpg"),
("COCO: Person skiing (000785)", "http://images.cocodataset.org/val2017/000000000785.jpg"),
("COCO: People running (000872)", "http://images.cocodataset.org/val2017/000000000872.jpg"),
("Picsum: Mountain (ID=1000)", "https://picsum.photos/id/1000/800/600"),
("Picsum: Kayak (ID=1011)", "https://picsum.photos/id/1011/800/600"),
("Picsum: Man and dog (ID=1012)", "https://picsum.photos/id/1012/800/600"),
],
# SAT: satellite imagery examples
"sat493m": [
("– choose a satellite sample –", ""),
("Blue Marble (NASA)", "https://upload.wikimedia.org/wikipedia/commons/9/9d/The_Blue_Marble_%28remastered%29.jpg"),
("GOES-16 Hurricane Florence (2018)", "https://upload.wikimedia.org/wikipedia/commons/5/5e/Hurricane_Florence_GOES-16_2018-09-12_1510Z.jpg"),
("NASA Earth Observatory: Philippines", "https://eoimages.gsfc.nasa.gov/images/imagerecords/151000/151639/philippines_tmo_2020118_lrg.jpg"),
],
}
def _sample_labels_for(dataset_label: str):
key = DATASET_LABELS.get(dataset_label, "lvd1689m")
return [label for label, _ in SAMPLE_URL_CHOICES.get(key, [])]
def _apply_sample(dataset_label: str, sample_label: str):
"""Fill textbox with chosen sample URL and clear any uploaded image."""
key = DATASET_LABELS.get(dataset_label, "lvd1689m")
sample_map = dict(SAMPLE_URL_CHOICES.get(key, []))
url = sample_map.get(sample_label, "")
return gr.update(value=url), None # (textbox update, clear upload)
# ---------- Utility ----------
def load_image_from_any(src: Optional[Image.Image], url: Optional[str]) -> Optional[Image.Image]:
# Prefer URL if present
if url and str(url).strip().lower().startswith(("http://", "https://")):
with urllib.request.urlopen(url) as resp:
data = resp.read()
return Image.open(io.BytesIO(data)).convert("RGB")
if isinstance(src, Image.Image):
return src.convert("RGB")
return None
def pad_to_multiple(pil_img: Image.Image, multiple: int = 16) -> Tuple[Image.Image, Tuple[int, int, int, int]]:
W, H = pil_img.size
H_pad = int(math.ceil(H / multiple) * multiple)
W_pad = int(math.ceil(W / multiple) * multiple)
if (H_pad, W_pad) == (H, W):
return pil_img, (0, 0, 0, 0)
canvas = Image.new("RGB", (W_pad, H_pad), (0, 0, 0))
canvas.paste(pil_img, (0, 0))
return canvas, (0, 0, W_pad - W, H_pad - H)
def preprocess_no_resize(pil_img: Image.Image, multiple: int = 16):
img_padded, pad_box = pad_to_multiple(pil_img, multiple=multiple)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]),
])
pixel_tensor = transform(img_padded).unsqueeze(0) # (1,3,H,W)
disp_np = np.array(img_padded, dtype=np.uint8)
return {"pixel_values": pixel_tensor}, disp_np, pad_box
def upsample_nearest(arr: np.ndarray, H: int, W: int, ps: int) -> np.ndarray:
if arr.ndim == 2:
return arr.repeat(ps, 0).repeat(ps, 1)
elif arr.ndim == 3:
rows, cols, ch = arr.shape
arr2 = arr.repeat(ps, 0).repeat(ps, 1)
return arr2.reshape(rows * ps, cols * ps, ch)
raise ValueError("upsample_nearest expects (rows,cols) or (rows,cols,channels)")
def blend_overlay(base_uint8: np.ndarray, overlay_rgb_float: np.ndarray, alpha: float) -> np.ndarray:
base = base_uint8.astype(np.float32)
over = (overlay_rgb_float * 255.0).astype(np.float32)
out = (1.0 - alpha) * base + alpha * over
return np.clip(out, 0, 255).astype(np.uint8)
def draw_grid(img: Image.Image, rows: int, cols: int, ps: int):
d = ImageDraw.Draw(img)
W, H = img.size
for r in range(1, rows):
y = r * ps
d.line([(0, y), (W, y)], fill=(255, 255, 255), width=1)
for c in range(1, cols):
x = c * ps
d.line([(x, 0), (x, H)], fill=(255, 255, 255), width=1)
def rc_to_idx(r: int, c: int, cols: int) -> int:
return int(r) * cols + int(c)
def idx_to_rc(i: int, cols: int) -> Tuple[int, int]:
return int(i) // cols, int(i) % cols
# ---------- Model cache ----------
@lru_cache(maxsize=3)
def load_model_cached(full_model_id: str, device_str: str):
device = torch.device(device_str)
model = AutoModel.from_pretrained(full_model_id).to(device)
model.eval()
return model
def infer_patch_size(model, default: int = 16) -> int:
if hasattr(model, "config") and hasattr(model.config, "patch_size"):
ps = model.config.patch_size
if isinstance(ps, (tuple, list)): return int(ps[0])
return int(ps)
if hasattr(model, "patch_size"):
ps = model.patch_size
if isinstance(ps, (tuple, list)): return int(ps[0])
return int(ps)
return default
# ---------- Per-image state ----------
class PatchImageState:
def __init__(self, pil_img: Image.Image, model, device_str: str, ps: int):
self.pil = pil_img
self.ps = ps
inputs, disp_np, _ = preprocess_no_resize(pil_img, multiple=ps)
self.disp = disp_np
pv = inputs["pixel_values"].to(device_str) # (1,3,H,W)
_, _, H, W = pv.shape
self.H, self.W = int(H), int(W)
self.rows, self.cols = self.H // ps, self.W // ps
with torch.no_grad():
out = model(pixel_values=pv)
hs = out.last_hidden_state.squeeze(0).detach().cpu().numpy() # (T,D)
T, D = hs.shape
n_patches = self.rows * self.cols
n_special = T - n_patches # class + maybe registers
if n_special < 1:
raise RuntimeError(
f"Token mismatch: T={T}, rows*cols={n_patches}, HxW={self.H}x{self.W}, ps={ps}"
)
self.D = D
patches = hs[n_special:, :].reshape(self.rows, self.cols, D)
self.X = patches.reshape(-1, D)
self.Xn = self.X / (np.linalg.norm(self.X, axis=1, keepdims=True) + 1e-8)
# ---------- Rendering / compute ----------
def render_with_cosmap(
st: PatchImageState,
cos_map: Optional[np.ndarray],
overlay_alpha: float,
show_grid_flag: bool,
select_idx: Optional[int] = None,
best_idx: Optional[int] = None,
) -> Image.Image:
H, W, ps = st.H, st.W, st.ps
rows, cols = st.rows, st.cols
if cos_map is None:
disp = np.full((rows, cols), 0.5, dtype=np.float32)
else:
vmin, vmax = float(cos_map.min()), float(cos_map.max())
rng = vmax - vmin if vmax > vmin else 1e-8
disp = (cos_map - vmin) / rng
cmap = cm.get_cmap("magma")
rgba = cmap(disp)
rgb = rgba[..., :3]
if select_idx is not None:
rs, cs = idx_to_rc(select_idx, cols)
rgb[rs, cs, :] = np.array([1.0, 0.0, 0.0], dtype=np.float32)
over_rgb_up = upsample_nearest(rgb, H, W, ps)
blended = blend_overlay(st.disp, over_rgb_up, float(overlay_alpha))
pil = Image.fromarray(blended)
draw = ImageDraw.Draw(pil)
if show_grid_flag:
draw_grid(pil, rows, cols, ps)
if select_idx is not None:
r, c = idx_to_rc(select_idx, cols)
x0, y0 = c * ps, r * ps
x1, y1 = x0 + ps - 1, y0 + ps - 1
draw.rectangle([(x0, y0), (x1, y1)], outline=(255, 0, 0), width=2)
if best_idx is not None:
r, c = idx_to_rc(best_idx, cols)
x0, y0 = c * ps, r * ps
x1, y1 = x0 + ps - 1, y0 + ps - 1
draw.rectangle([(x0, y0), (x1, y1)], outline=(255, 255, 0), width=2)
return pil
def compute_self_and_cross(
src: PatchImageState,
tgt: Optional[PatchImageState],
q_idx: int,
):
q = src.X[q_idx]
qn = q / (np.linalg.norm(q) + 1e-8)
cos_self = src.Xn @ qn
cos_map_self = cos_self.reshape(src.rows, src.cols)
self_stats = (float(cos_map_self.min()), float(cos_map_self.max()))
cross_result = None
cos_map_cross = None
if tgt is not None:
cos_cross = tgt.Xn @ qn
cos_map_cross = cos_cross.reshape(tgt.rows, tgt.cols)
cross_min, cross_max = float(cos_map_cross.min()), float(cos_map_cross.max())
best_idx = int(np.argmax(cos_cross))
cross_result = (cross_min, cross_max, best_idx)
return cos_map_self, cos_map_cross, self_stats, cross_result
# ---------- Gradio helpers for model & samples ----------
def dataset_label_to_key(label: str) -> str:
return DATASET_LABELS.get(label, "lvd1689m")
def update_model_dropdown(dataset_label: str):
key = dataset_label_to_key(dataset_label)
opts = MODEL_OPTIONS_BY_DATASET.get(key, [])
default_val = opts[0] if opts else None
return gr.update(choices=opts, value=default_val)
def update_model_and_samples(dataset_label: str):
# Update model dropdown
model_update = update_model_dropdown(dataset_label)
# Update both sample dropdowns to dataset-specific options
labels = _sample_labels_for(dataset_label)
sample_update = gr.update(choices=labels, value=(labels[0] if labels else None))
return model_update, sample_update, sample_update
def resolve_full_model_id(dataset_label: str, short_name: str) -> Optional[str]:
key = (dataset_label_to_key(dataset_label), short_name)
return VALID_MODEL_MAP.get(key)
# ---------- Gradio callbacks ----------
def init_states(
left_img_in: Optional[Image.Image],
left_url: str,
right_img_in: Optional[Image.Image],
right_url: str,
dataset_label: str,
short_model: str,
show_grid_flag: bool,
overlay_alpha: float,
):
# Resolve images
left_img = load_image_from_any(left_img_in, left_url)
right_img = load_image_from_any(right_img_in, right_url)
if left_img is None and right_img is None:
left_img = load_image_from_any(None, DEFAULT_URL)
# Resolve model
full_model_id = resolve_full_model_id(dataset_label, short_model)
if not full_model_id:
return (gr.update(), gr.update(), None, None, 0, -1, -1, 16,
f"❌ Model not available: {dataset_label} / {short_model}")
device_str = "cuda" if torch.cuda.is_available() else "cpu"
model = load_model_cached(full_model_id, device_str)
ps = infer_patch_size(model, 16)
left_state = PatchImageState(left_img, model, device_str, ps) if left_img is not None else None
right_state = PatchImageState(right_img, model, device_str, ps) if right_img is not None else None
active_side = 0 if left_state is not None else 1
status = f"✔ Loaded: {full_model_id} | ps={ps}"
out_left, out_right = None, None
if left_state is not None and right_state is not None:
q_idx = (left_state.rows // 2) * left_state.cols + (left_state.cols // 2)
cos_self, cos_cross, (smin, smax), cross_info = compute_self_and_cross(left_state, right_state, q_idx)
best_idx = cross_info[2] if cross_info else None
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
out_right = render_with_cosmap(right_state, cos_cross, overlay_alpha, show_grid_flag,
select_idx=None, best_idx=best_idx)
status += (f" | LEFT {left_state.rows}x{left_state.cols} self∈[{smin:.3f},{smax:.3f}] "
f"| RIGHT cross best={best_idx}")
left_idx, right_idx = q_idx, (right_state.rows // 2) * right_state.cols + (right_state.cols // 2)
elif left_state is not None:
q_idx = (left_state.rows // 2) * left_state.cols + (left_state.cols // 2)
cos_self, _, (smin, smax), _ = compute_self_and_cross(left_state, None, q_idx)
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
status += f" | Single LEFT {left_state.rows}x{left_state.cols} self∈[{smin:.3f},{smax:.3f}]"
left_idx, right_idx = q_idx, -1
else:
q_idx = (right_state.rows // 2) * right_state.cols + (right_state.cols // 2)
cos_self, _, (smin, smax), _ = compute_self_and_cross(right_state, None, q_idx)
out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
status += f" | Single RIGHT {right_state.rows}x{right_state.cols} self∈[{smin:.3f},{smax:.3f}]"
left_idx, right_idx = -1, q_idx
return (
out_left, out_right,
left_state, right_state,
active_side,
left_idx, right_idx,
ps,
status
)
def _coords_to_idx(x: int, y: int, st: PatchImageState) -> int:
r = int(np.clip(y // st.ps, 0, st.rows - 1))
c = int(np.clip(x // st.ps, 0, st.cols - 1))
return rc_to_idx(r, c, st.cols)
def on_select_left(
evt: gr.SelectData,
left_state: Optional[PatchImageState],
right_state: Optional[PatchImageState],
show_grid_flag: bool,
overlay_alpha: float,
ps: int,
):
if left_state is None:
return gr.update(), gr.update(), 0, -1, -1, "Upload/Load a LEFT image first."
x, y = evt.index
q_idx = _coords_to_idx(x, y, left_state)
if right_state is not None:
cos_self, cos_cross, (smin, smax), cross_info = compute_self_and_cross(left_state, right_state, q_idx)
best_idx = cross_info[2]
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
out_right = render_with_cosmap(right_state, cos_cross, overlay_alpha, show_grid_flag,
select_idx=None, best_idx=best_idx)
status = (f"LEFT {left_state.rows}x{left_state.cols} self∈[{smin:.3f},{smax:.3f}] | "
f"RIGHT cross best idx={best_idx}")
return out_left, out_right, 0, q_idx, -1, status
else:
cos_self, _, (smin, smax), _ = compute_self_and_cross(left_state, None, q_idx)
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
status = f"Single LEFT • idx={q_idx} • self∈[{smin:.3f},{smax:.3f}]"
return out_left, gr.update(), 0, q_idx, -1, status
def on_select_right(
evt: gr.SelectData,
left_state: Optional[PatchImageState],
right_state: Optional[PatchImageState],
show_grid_flag: bool,
overlay_alpha: float,
ps: int,
):
if right_state is None:
return gr.update(), gr.update(), 1, -1, -1, "Upload/Load a RIGHT image first."
x, y = evt.index
q_idx = _coords_to_idx(x, y, right_state)
if left_state is not None:
cos_self, cos_cross, (smin, smax), cross_info = compute_self_and_cross(right_state, left_state, q_idx)
best_idx = cross_info[2]
out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
out_left = render_with_cosmap(left_state, cos_cross, overlay_alpha, show_grid_flag,
select_idx=None, best_idx=best_idx)
status = (f"RIGHT {right_state.rows}x{right_state.cols} self∈[{smin:.3f},{smax:.3f}] | "
f"LEFT cross best idx={best_idx}")
return out_left, out_right, 1, -1, q_idx, status
else:
cos_self, _, (smin, smax), _ = compute_self_and_cross(right_state, None, q_idx)
out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
status = f"Single RIGHT • idx={q_idx} • self∈[{smin:.3f},{smax:.3f}]"
return gr.update(), out_right, 1, -1, q_idx, status
def rebuild_with_settings(
left_state: Optional[PatchImageState],
right_state: Optional[PatchImageState],
active_side: int,
left_idx: int,
right_idx: int,
show_grid_flag: bool,
overlay_alpha: float,
ps: int,
):
if left_state is None and right_state is None:
return gr.update(), gr.update(), "Load an image first."
if left_state is not None and right_state is not None:
if active_side == 0:
q_idx = left_idx if left_idx >= 0 else (left_state.rows//2)*left_state.cols + (left_state.cols//2)
cos_self, cos_cross, _, cross_info = compute_self_and_cross(left_state, right_state, q_idx)
best_idx = cross_info[2]
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
out_right = render_with_cosmap(right_state, cos_cross, overlay_alpha, show_grid_flag,
select_idx=None, best_idx=best_idx)
else:
q_idx = right_idx if right_idx >= 0 else (right_state.rows//2)*right_state.cols + (right_state.cols//2)
cos_self, cos_cross, _, cross_info = compute_self_and_cross(right_state, left_state, q_idx)
best_idx = cross_info[2]
out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
out_left = render_with_cosmap(left_state, cos_cross, overlay_alpha, show_grid_flag,
select_idx=None, best_idx=best_idx)
return out_left, out_right, "Updated overlays."
elif left_state is not None:
q_idx = left_idx if left_idx >= 0 else (left_state.rows//2)*left_state.cols + (left_state.cols//2)
cos_self, _, _, _ = compute_self_and_cross(left_state, None, q_idx)
out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
return out_left, gr.update(), "Updated overlays."
else:
q_idx = right_idx if right_idx >= 0 else (right_state.rows//2)*right_state.cols + (right_state.cols//2)
cos_self, _, _, _ = compute_self_and_cross(right_state, None, q_idx)
out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag,
select_idx=q_idx, best_idx=None)
return gr.update(), out_right, "Updated overlays."
# ---------- Gradio UI ----------
with gr.Blocks(title="DINOv3 Patch Similarity (Self & Cross)") as demo:
gr.Markdown(
"""
# DINOv3 Patch Similarity (Self & Cross)
1) Pick **Dataset** (LVD-1689M / SAT-493M).
2) Pick **Model**.
3) Upload one or two images (or paste URLs) and press **Initialize / Update**.
- Click on a patch to update overlays.
- In two-image mode, the non-active image hides the red selection and shows **yellow** best match.
"""
)
with gr.Row():
dataset_radio = gr.Radio(
label="Dataset",
choices=list(DATASET_LABELS.keys()),
value=DEFAULT_DATASET_LABEL,
interactive=True
)
initial_key = DATASET_LABELS[DEFAULT_DATASET_LABEL]
initial_models = MODEL_OPTIONS_BY_DATASET.get(initial_key, [])
model_dropdown = gr.Dropdown(
label="Model name",
choices=initial_models,
value=(initial_models[0] if initial_models else None),
interactive=True
)
# initial sample labels based on default dataset
initial_sample_labels = [label for label, _ in SAMPLE_URL_CHOICES.get(initial_key, [])]
with gr.Row():
with gr.Column():
left_input = gr.Image(label="Left Image (upload)", type="pil",
sources=["upload", "clipboard", "webcam"], interactive=True)
left_url = gr.Textbox(label="Left Image URL (optional)", placeholder="https://...")
left_sample = gr.Dropdown(label="Use a sample URL",
choices=initial_sample_labels,
value=(initial_sample_labels[0] if initial_sample_labels else None),
interactive=True)
with gr.Column():
right_input = gr.Image(label="Right Image (upload)", type="pil",
sources=["upload", "clipboard", "webcam"], interactive=True)
right_url = gr.Textbox(label="Right Image URL (optional)", placeholder="https://...")
right_sample = gr.Dropdown(label="Use a sample URL",
choices=initial_sample_labels,
value=(initial_sample_labels[0] if initial_sample_labels else None),
interactive=True)
with gr.Accordion("Overlay Settings", open=True):
show_grid = gr.Checkbox(label="Show patch grid", value=DEFAULT_SHOW_GRID)
overlay_alpha = gr.Slider(label="Overlay alpha", minimum=0.0, maximum=1.0,
value=DEFAULT_OVERLAY_ALPHA, step=0.01)
init_btn = gr.Button("Initialize / Update", variant="primary")
with gr.Row():
left_view = gr.Image(label="LEFT (click to select patch)", interactive=True)
right_view = gr.Image(label="RIGHT (click to select patch)", interactive=True)
status = gr.Markdown("")
# Hidden states
left_state = gr.State(None)
right_state = gr.State(None)
active_side = gr.State(0)
left_idx = gr.State(-1)
right_idx = gr.State(-1)
ps_state = gr.State(16)
# Update model dropdown and sample lists when dataset changes
dataset_radio.change(
fn=update_model_and_samples,
inputs=[dataset_radio],
outputs=[model_dropdown, left_sample, right_sample]
)
# When a sample is chosen, set URL and clear any uploaded image (prefer URL)
left_sample.change(
fn=_apply_sample,
inputs=[dataset_radio, left_sample],
outputs=[left_url, left_input]
)
right_sample.change(
fn=_apply_sample,
inputs=[dataset_radio, right_sample],
outputs=[right_url, right_input]
)
# Initialize / reload model + overlays
init_btn.click(
fn=init_states,
inputs=[left_input, left_url, right_input, right_url, dataset_radio, model_dropdown, show_grid, overlay_alpha],
outputs=[left_view, right_view, left_state, right_state, active_side, left_idx, right_idx, ps_state, status],
show_progress=True
)
# Click handlers
left_view.select(
fn=on_select_left,
inputs=[left_state, right_state, show_grid, overlay_alpha, ps_state],
outputs=[left_view, right_view, active_side, left_idx, right_idx, status]
)
right_view.select(
fn=on_select_right,
inputs=[left_state, right_state, show_grid, overlay_alpha, ps_state],
outputs=[left_view, right_view, active_side, left_idx, right_idx, status]
)
# Live re-render on setting changes
show_grid.change(
fn=rebuild_with_settings,
inputs=[left_state, right_state, active_side, left_idx, right_idx, show_grid, overlay_alpha, ps_state],
outputs=[left_view, right_view, status]
)
overlay_alpha.change(
fn=rebuild_with_settings,
inputs=[left_state, right_state, active_side, left_idx, right_idx, show_grid, overlay_alpha, ps_state],
outputs=[left_view, right_view, status]
)
if __name__ == "__main__":
demo.queue().launch()
|