File size: 18,446 Bytes
faca9e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# filepath: DINOv3-PatchSimilarity/DINOv3CosSimilarity2Images.py
# filepath: DINOv3-PatchSimilarity/DINOv3CosSimilarity.py
# Interactive DINOv3 patch similarity viewer for one or two images
# Interactive DINOv3 patch similarity viewer (NO AutoImageProcessor, NO resize)
# - Single-image mode (0 or 1 image given): original behavior
# - Two-image mode (2 images given): when you click or move on one image,
#   shows BOTH overlays (self on source, cross on target).
#   NEW: Red selection rectangle is hidden on the non-active image.

import sys, math, io, urllib.request, argparse, os
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import matplotlib
try:
    matplotlib.use("TkAgg")
except Exception:
    pass
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from transformers import AutoModel

# ---------- Defaults / knobs ----------
DEFAULT_URL = "http://images.cocodataset.org/val2017/000000039769.jpg"
DEFAULT_MODEL_ID = "facebook/dinov3-vits16-pretrain-lvd1689m"

SHOW_GRID = True
ANNOTATE_INDICES = False
OVERLAY_ALPHA = 0.55
PATCH_SIZE_OVERRIDE = None   # set 16 to force; None = read from model if available

# ---------- Image I/O ----------
def load_image(path_or_url):
    if str(path_or_url).startswith(("http://", "https://")):
        with urllib.request.urlopen(path_or_url) as resp:
            data = resp.read()
        return Image.open(io.BytesIO(data)).convert("RGB")
    return Image.open(path_or_url).convert("RGB")

# ---------- Preprocessing (custom, no resize) ----------
def pad_to_multiple(pil_img, multiple=16):
    W, H = pil_img.size
    H_pad = int(math.ceil(H / multiple) * multiple)
    W_pad = int(math.ceil(W / multiple) * multiple)
    if (H_pad, W_pad) == (H, W):
        return pil_img, (0, 0, 0, 0)
    canvas = Image.new("RGB", (W_pad, H_pad), (0, 0, 0))
    canvas.paste(pil_img, (0, 0))
    return canvas, (0, 0, W_pad - W, H_pad - H)

def preprocess_image_no_resize(pil_img, multiple=16):
    img_padded, pad_box = pad_to_multiple(pil_img, multiple=multiple)
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    pixel_tensor = transform(img_padded).unsqueeze(0)  # (1,3,H,W)
    disp_np = np.array(img_padded, dtype=np.uint8)     # (H,W,3) for display
    return {"pixel_values": pixel_tensor}, disp_np, pad_box

# ---------- Utilities ----------
def upsample_nearest(arr, H, W, ps):
    if arr.ndim == 2:
        return arr.repeat(ps, 0).repeat(ps, 1)
    elif arr.ndim == 3:
        # arr shape: (rows, cols, channels)
        rows, cols, channels = arr.shape
        arr_up = arr.repeat(ps, 0).repeat(ps, 1)
        return arr_up.reshape(rows * ps, cols * ps, channels)
    raise ValueError("upsample_nearest expects (rows,cols) or (rows,cols,channels)")

def draw_grid(ax, rows, cols, ps):
    for r in range(1, rows):
        ax.axhline(r * ps - 0.5, lw=0.8, alpha=0.6, color="white", zorder=3)
    for c in range(1, cols):
        ax.axvline(c * ps - 0.5, lw=0.8, alpha=0.6, color="white", zorder=3)

def draw_indices(ax, rows, cols, ps):
    for r in range(rows):
        for c in range(cols):
            idx = r * cols + c
            ax.text(c * ps + ps / 2, r * ps + ps / 2, str(idx),
                    ha="center", va="center", fontsize=7,
                    color="white", alpha=0.95, zorder=4)

def rc_to_idx(r, c, cols): return int(r) * cols + int(c)
def idx_to_rc(i, cols):    return (int(i) // cols, int(i) % cols)

# ---------- Per-image embeddings ----------
class PatchImageState:
    def __init__(self, pil_img, model, device, ps):
        self.pil = pil_img
        self.ps = ps
        inputs, disp_np, _ = preprocess_image_no_resize(pil_img, multiple=ps)
        self.disp = disp_np
        self.pixel_values = inputs["pixel_values"].to(device)  # (1,3,H,W)
        _, _, self.H, self.W = self.pixel_values.shape
        self.rows, self.cols = self.H // ps, self.W // ps

        with torch.no_grad():
            out = model(pixel_values=self.pixel_values)
        hs = out.last_hidden_state.squeeze(0).detach().cpu().numpy()  # (T,D)

        T, D = hs.shape
        n_patches = self.rows * self.cols
        n_special = T - n_patches  # class + possible register tokens
        if n_special < 1:
            raise RuntimeError(
                f"[error] Token shape mismatch. T={T}, rows*cols={n_patches}, HxW={self.H}x{self.W}, ps={ps}"
            )

        self.D = D
        self.patch_embs = hs[n_special:, :].reshape(self.rows, self.cols, D)  # (rows,cols,D)
        self.X = self.patch_embs.reshape(-1, D)  # (N,D)
        self.Xn = self.X / (np.linalg.norm(self.X, axis=1, keepdims=True) + 1e-8)  # normalized

        # UI bits (set later by the viewers)
        self.ax = None
        self.overlay_im = None
        self.sel_rect = None
        self.best_rect = None

# ---------- Single-image mode ----------
def run_single_image(img_path, model, device, ps, show_grid, annotate_indices, overlay_alpha):
    img = load_image(img_path)
    st = PatchImageState(img, model, device, ps)

    fig, ax = plt.subplots(figsize=(9, 9))
    st.ax = ax
    ax.imshow(st.disp, zorder=0)
    ax.set_axis_off()
    if show_grid:
        draw_grid(ax, st.rows, st.cols, st.ps)
    if annotate_indices:
        draw_indices(ax, st.rows, st.cols, st.ps)

    # neutral overlay to start
    init_scalar = 0.5 * np.ones((st.rows, st.cols), dtype=np.float32)
    rgba = plt.get_cmap("magma")(init_scalar)
    rgba_up = upsample_nearest(rgba, st.H, st.W, st.ps)
    st.overlay_im = ax.imshow(rgba_up, alpha=overlay_alpha, zorder=1)

    st.sel_rect = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="red", zorder=5)
    ax.add_patch(st.sel_rect)

    current_idx = (st.rows // 2) * st.cols + st.cols // 2
    cmap = plt.get_cmap("magma")

    def update(idx):
        nonlocal current_idx
        current_idx = int(np.clip(idx, 0, st.rows * st.cols - 1))
        r, c = idx_to_rc(current_idx, st.cols)

        q = st.X[current_idx]
        qn = q / (np.linalg.norm(q) + 1e-8)
        cos = st.Xn @ qn
        cos_map = cos.reshape(st.rows, st.cols)

        disp = (cos_map - cos_map.min()) / (cos_map.ptp() + 1e-8)
        rgba = cmap(disp)
        # Force selected cell to pure RED (and full alpha in the RGBA array)
        rgba[r, c, 0:3] = np.array([1.0, 0.0, 0.0])
        rgba[r, c, 3]   = 1.0

        st.overlay_im.set_data(upsample_nearest(rgba, st.H, st.W, st.ps))
        st.overlay_im.set_alpha(overlay_alpha)  # global alpha

        st.sel_rect.set_xy((c * st.ps, r * st.ps))
        ax.set_title(
            f"Single-image • idx={current_idx} (r={r}, c={c}) • cos∈[{cos_map.min():.3f},{cos_map.max():.3f}]",
            fontsize=11
        )
        fig.canvas.draw_idle()

    def on_click(event):
        if event.inaxes != ax or event.xdata is None or event.ydata is None:
            return
        r = int(np.clip(event.ydata // st.ps, 0, st.rows - 1))
        c = int(np.clip(event.xdata // st.ps, 0, st.cols - 1))
        update(rc_to_idx(r, c, st.cols))

    def on_key(event):
        nonlocal current_idx
        r, c = idx_to_rc(current_idx, st.cols)
        if event.key == "left":
            c = max(0, c - 1)
        elif event.key == "right":
            c = min(st.cols - 1, c + 1)
        elif event.key == "up":
            r = max(0, r - 1)
        elif event.key == "down":
            r = min(st.rows - 1, r + 1)
        elif event.key == "q":
            plt.close(fig); return
        else:
            return
        update(rc_to_idx(r, c, st.cols))

    fig.canvas.mpl_connect("button_press_event", on_click)
    fig.canvas.mpl_connect("key_press_event", on_key)

    update(current_idx)
    print("[single-image] Controls: click to select • arrows to move • 'q' to quit")
    plt.tight_layout()
    plt.show()

# ---------- Two-image mode (shows BOTH overlays; hides red rect on non-active) ----------
def run_two_images(img1_path, img2_path, model, device, ps, show_grid, annotate_indices, overlay_alpha):
    img1, img2 = load_image(img1_path), load_image(img2_path)
    S = [PatchImageState(img1, model, device, ps),
         PatchImageState(img2, model, device, ps)]
    if S[0].D != S[1].D:
        raise RuntimeError("Embedding dims differ — use the same model for both images.")

    fig, (axL, axR) = plt.subplots(1, 2, figsize=(12, 6))
    axs = [axL, axR]
    for i, (ax, st) in enumerate(zip(axs, S)):
        st.ax = ax
        ax.imshow(st.disp, zorder=0)
        ax.set_axis_off()
        if show_grid:
            draw_grid(ax, st.rows, st.cols, st.ps)
        if annotate_indices:
            draw_indices(ax, st.rows, st.cols, st.ps)
        # start overlays (hidden until first render)
        init_scalar = 0.5 * np.ones((st.rows, st.cols), dtype=np.float32)
        rgba = plt.get_cmap("magma")(init_scalar)
        rgba_up = upsample_nearest(rgba, st.H, st.W, st.ps)
        st.overlay_im = ax.imshow(rgba_up, alpha=0.0, zorder=1)

        st.sel_rect  = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="red",    zorder=5)
        st.best_rect = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="yellow", zorder=6)
        ax.add_patch(st.sel_rect)
        ax.add_patch(st.best_rect)
        st.best_rect.set_visible(False)

    active_side = 0  # 0=left, 1=right
    current_idx = [ (S[0].rows//2)*S[0].cols + S[0].cols//2,
                    (S[1].rows//2)*S[1].cols + S[1].cols//2 ]
    cmap = plt.get_cmap("magma")

    def set_titles(src_i=None, self_stats=None, cross_stats=None):
        axs[0].set_title(f"LEFT  • {S[0].rows}x{S[0].cols} patches • {'ACTIVE' if active_side==0 else ''}", fontsize=10)
        axs[1].set_title(f"RIGHT • {S[1].rows}x{S[1].cols} patches • {'ACTIVE' if active_side==1 else ''}", fontsize=10)
        if src_i is not None and self_stats is not None and cross_stats is not None:
            src_name = "LEFT" if src_i == 0 else "RIGHT"
            tgt_name = "RIGHT" if src_i == 0 else "LEFT"
            fig.suptitle(
                f"Source: {src_name}  |  Self cos∈[{self_stats[0]:.3f},{self_stats[1]:.3f}]  •  "
                f"{tgt_name} cos∈[{cross_stats[0]:.3f},{cross_stats[1]:.3f}]  |  "
                f"Controls: click=select • arrows=move • '1'/'2'/'t'=switch side • 'q'=quit",
                fontsize=11
            )
        else:
            fig.suptitle(
                "Controls: click=select • arrows=move • '1'/'2'/'t'=switch side • 'q'=quit",
                fontsize=11
            )

    def clamp_idx(i, st):
        return int(np.clip(i, 0, st.rows*st.cols - 1))

    def update_selection_rects():
        # position rects
        for i, st in enumerate(S):
            r, c = idx_to_rc(current_idx[i], st.cols)
            st.sel_rect.set_xy((c * st.ps, r * st.ps))
        # visibility: only active side shows red rect
        for i, st in enumerate(S):
            st.sel_rect.set_visible(i == active_side)

    def compute_and_show_both_from_src(src_i):
        """Show self-similarity on src and cross-similarity on the other image."""
        src = S[src_i]
        tgt_i = 1 - src_i
        tgt = S[tgt_i]

        q_idx = clamp_idx(current_idx[src_i], src)
        q = src.X[q_idx]
        qn = q / (np.linalg.norm(q) + 1e-8)

        # --- Self on src ---
        cos_self = src.Xn @ qn
        cos_map_self = cos_self.reshape(src.rows, src.cols)
        disp_self = (cos_map_self - cos_map_self.min()) / (cos_map_self.ptp() + 1e-8)
        rgba_self = cmap(disp_self)
        r0, c0 = idx_to_rc(q_idx, src.cols)
        rgba_self[r0, c0, 0:3] = np.array([1.0, 0.0, 0.0])
        rgba_self[r0, c0, 3]   = 1.0
        src.overlay_im.set_data(upsample_nearest(rgba_self, src.H, src.W, src.ps))
        src.overlay_im.set_alpha(overlay_alpha)

        # --- Cross on tgt ---
        cos_cross = tgt.Xn @ qn
        cos_map_cross = cos_cross.reshape(tgt.rows, tgt.cols)
        disp_cross = (cos_map_cross - cos_map_cross.min()) / (cos_map_cross.ptp() + 1e-8)
        rgba_cross = cmap(disp_cross)
        tgt.overlay_im.set_data(upsample_nearest(rgba_cross, tgt.H, tgt.W, tgt.ps))
        tgt.overlay_im.set_alpha(overlay_alpha)

        # highlight best match on target
        best = int(np.argmax(cos_cross))
        br, bc = idx_to_rc(best, tgt.cols)
        tgt.best_rect.set_xy((bc * tgt.ps, br * tgt.ps))
        tgt.best_rect.set_visible(True)

        # Hide best on source (self best is the selected cell)
        src.best_rect.set_visible(False)

        set_titles(src_i, (cos_map_self.min(), cos_map_self.max()),
                          (cos_map_cross.min(), cos_map_cross.max()))
        fig.canvas.draw_idle()

    def on_click(event):
        nonlocal active_side
        if event.inaxes is None or event.xdata is None or event.ydata is None:
            return
        side = 0 if event.inaxes is axs[0] else (1 if event.inaxes is axs[1] else None)
        if side is None: return
        st = S[side]
        r = int(np.clip(event.ydata // st.ps, 0, st.rows - 1))
        c = int(np.clip(event.xdata // st.ps, 0, st.cols - 1))
        current_idx[side] = rc_to_idx(r, c, st.cols)
        active_side = side
        update_selection_rects()        # <-- updates visibility
        compute_and_show_both_from_src(active_side)

    def on_key(event):
        nonlocal active_side
        if event.key == "q":
            plt.close(fig); return
        if event.key in ("t", "T"):
            active_side = 1 - active_side
            update_selection_rects()    # <-- updates visibility
            compute_and_show_both_from_src(active_side); return
        if event.key == "1":
            active_side = 0
            update_selection_rects()
            compute_and_show_both_from_src(active_side); return
        if event.key == "2":
            active_side = 1
            update_selection_rects()
            compute_and_show_both_from_src(active_side); return

        st = S[active_side]
        r, c = idx_to_rc(current_idx[active_side], st.cols)
        if event.key == "left":
            c = max(0, c - 1)
        elif event.key == "right":
            c = min(st.cols - 1, c + 1)
        elif event.key == "up":
            r = max(0, r - 1)
        elif event.key == "down":
            r = min(st.rows - 1, r + 1)
        else:
            return
        current_idx[active_side] = rc_to_idx(r, c, st.cols)
        update_selection_rects()        # keep visibility rule consistent
        compute_and_show_both_from_src(active_side)

    update_selection_rects()            # initialize positions + visibility
    set_titles()
    compute_and_show_both_from_src(active_side)

    fig.canvas.mpl_connect("button_press_event", on_click)
    fig.canvas.mpl_connect("key_press_event", on_key)

    print("[two-image BOTH] Controls:")
    print("  • Click on LEFT/RIGHT to select query patch (shows self + cross overlays)")
    print("  • Arrow keys move selection on ACTIVE side")
    print("  • '1'/'2'/'t' to switch side • 'q' to quit")
    plt.tight_layout()
    plt.show()

# ---------- Main ----------
def main():
    parser = argparse.ArgumentParser(description="DINOv3 Patch Similarity Viewer (1 or 2 images; two-image shows BOTH overlays)")
    # Accept either --image (single) or --image1/--image2 (two)
    parser.add_argument("--image", type=str, default=None,
                        help="Path/URL to image (single-image mode if only this is provided)")
    parser.add_argument("--image1", type=str, default=None,
                        help="Path/URL to first image (two-image mode if image2 is also provided)")
    parser.add_argument("--image2", type=str, default=None,
                        help="Path/URL to second image (two-image mode when given)")
    parser.add_argument("--model", type=str, default=DEFAULT_MODEL_ID,
                        help="DINOv3 model repo id (e.g., facebook/dinov3-vits16-pretrain-lvd1689m)")
    parser.add_argument("--show_grid", action="store_true", help="Draw patch grid")
    parser.add_argument("--annotate_indices", action="store_true", help="Write patch indices on cells")
    parser.add_argument("--overlay_alpha", type=float, default=OVERLAY_ALPHA, help="Heatmap alpha")
    parser.add_argument("--patch_size", type=int, default=(PATCH_SIZE_OVERRIDE or -1),
                        help="Override patch size. Set 16 to force. Default: model's patch size")
    args = parser.parse_args()

    show_grid = args.show_grid or SHOW_GRID
    annotate_indices = args.annotate_indices or ANNOTATE_INDICES
    overlay_alpha = args.overlay_alpha

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"[info] Device: {device}")
    model = AutoModel.from_pretrained(args.model).to(device)
    model.eval()

    def get_patch_size_from_model(model, default=16):
        # Try to get patch size from model config if available
        if hasattr(model, "config") and hasattr(model.config, "patch_size"):
            ps = model.config.patch_size
            if isinstance(ps, (tuple, list)):
                return ps[0]
            return ps
        # Try to get from model attributes
        if hasattr(model, "patch_size"):
            ps = model.patch_size
            if isinstance(ps, (tuple, list)):
                return ps[0]
            return ps
        return default

    ps = args.patch_size if args.patch_size and args.patch_size > 0 else get_patch_size_from_model(model, 16)
    print(f"[info] Using patch size: {ps}")

    # Routing logic:
    img1 = args.image1 or args.image
    img2 = args.image2

    if img1 and img2:
        run_two_images(img1, img2, model, device, ps, show_grid, annotate_indices, overlay_alpha)
    else:
        img_single = img1 or DEFAULT_URL
        run_single_image(img_single, model, device, ps, show_grid, annotate_indices, overlay_alpha)

if __name__ == "__main__":
    main()