File size: 18,446 Bytes
faca9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# filepath: DINOv3-PatchSimilarity/DINOv3CosSimilarity2Images.py
# filepath: DINOv3-PatchSimilarity/DINOv3CosSimilarity.py
# Interactive DINOv3 patch similarity viewer for one or two images
# Interactive DINOv3 patch similarity viewer (NO AutoImageProcessor, NO resize)
# - Single-image mode (0 or 1 image given): original behavior
# - Two-image mode (2 images given): when you click or move on one image,
# shows BOTH overlays (self on source, cross on target).
# NEW: Red selection rectangle is hidden on the non-active image.
import sys, math, io, urllib.request, argparse, os
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
import matplotlib
try:
matplotlib.use("TkAgg")
except Exception:
pass
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from transformers import AutoModel
# ---------- Defaults / knobs ----------
DEFAULT_URL = "http://images.cocodataset.org/val2017/000000039769.jpg"
DEFAULT_MODEL_ID = "facebook/dinov3-vits16-pretrain-lvd1689m"
SHOW_GRID = True
ANNOTATE_INDICES = False
OVERLAY_ALPHA = 0.55
PATCH_SIZE_OVERRIDE = None # set 16 to force; None = read from model if available
# ---------- Image I/O ----------
def load_image(path_or_url):
if str(path_or_url).startswith(("http://", "https://")):
with urllib.request.urlopen(path_or_url) as resp:
data = resp.read()
return Image.open(io.BytesIO(data)).convert("RGB")
return Image.open(path_or_url).convert("RGB")
# ---------- Preprocessing (custom, no resize) ----------
def pad_to_multiple(pil_img, multiple=16):
W, H = pil_img.size
H_pad = int(math.ceil(H / multiple) * multiple)
W_pad = int(math.ceil(W / multiple) * multiple)
if (H_pad, W_pad) == (H, W):
return pil_img, (0, 0, 0, 0)
canvas = Image.new("RGB", (W_pad, H_pad), (0, 0, 0))
canvas.paste(pil_img, (0, 0))
return canvas, (0, 0, W_pad - W, H_pad - H)
def preprocess_image_no_resize(pil_img, multiple=16):
img_padded, pad_box = pad_to_multiple(pil_img, multiple=multiple)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
pixel_tensor = transform(img_padded).unsqueeze(0) # (1,3,H,W)
disp_np = np.array(img_padded, dtype=np.uint8) # (H,W,3) for display
return {"pixel_values": pixel_tensor}, disp_np, pad_box
# ---------- Utilities ----------
def upsample_nearest(arr, H, W, ps):
if arr.ndim == 2:
return arr.repeat(ps, 0).repeat(ps, 1)
elif arr.ndim == 3:
# arr shape: (rows, cols, channels)
rows, cols, channels = arr.shape
arr_up = arr.repeat(ps, 0).repeat(ps, 1)
return arr_up.reshape(rows * ps, cols * ps, channels)
raise ValueError("upsample_nearest expects (rows,cols) or (rows,cols,channels)")
def draw_grid(ax, rows, cols, ps):
for r in range(1, rows):
ax.axhline(r * ps - 0.5, lw=0.8, alpha=0.6, color="white", zorder=3)
for c in range(1, cols):
ax.axvline(c * ps - 0.5, lw=0.8, alpha=0.6, color="white", zorder=3)
def draw_indices(ax, rows, cols, ps):
for r in range(rows):
for c in range(cols):
idx = r * cols + c
ax.text(c * ps + ps / 2, r * ps + ps / 2, str(idx),
ha="center", va="center", fontsize=7,
color="white", alpha=0.95, zorder=4)
def rc_to_idx(r, c, cols): return int(r) * cols + int(c)
def idx_to_rc(i, cols): return (int(i) // cols, int(i) % cols)
# ---------- Per-image embeddings ----------
class PatchImageState:
def __init__(self, pil_img, model, device, ps):
self.pil = pil_img
self.ps = ps
inputs, disp_np, _ = preprocess_image_no_resize(pil_img, multiple=ps)
self.disp = disp_np
self.pixel_values = inputs["pixel_values"].to(device) # (1,3,H,W)
_, _, self.H, self.W = self.pixel_values.shape
self.rows, self.cols = self.H // ps, self.W // ps
with torch.no_grad():
out = model(pixel_values=self.pixel_values)
hs = out.last_hidden_state.squeeze(0).detach().cpu().numpy() # (T,D)
T, D = hs.shape
n_patches = self.rows * self.cols
n_special = T - n_patches # class + possible register tokens
if n_special < 1:
raise RuntimeError(
f"[error] Token shape mismatch. T={T}, rows*cols={n_patches}, HxW={self.H}x{self.W}, ps={ps}"
)
self.D = D
self.patch_embs = hs[n_special:, :].reshape(self.rows, self.cols, D) # (rows,cols,D)
self.X = self.patch_embs.reshape(-1, D) # (N,D)
self.Xn = self.X / (np.linalg.norm(self.X, axis=1, keepdims=True) + 1e-8) # normalized
# UI bits (set later by the viewers)
self.ax = None
self.overlay_im = None
self.sel_rect = None
self.best_rect = None
# ---------- Single-image mode ----------
def run_single_image(img_path, model, device, ps, show_grid, annotate_indices, overlay_alpha):
img = load_image(img_path)
st = PatchImageState(img, model, device, ps)
fig, ax = plt.subplots(figsize=(9, 9))
st.ax = ax
ax.imshow(st.disp, zorder=0)
ax.set_axis_off()
if show_grid:
draw_grid(ax, st.rows, st.cols, st.ps)
if annotate_indices:
draw_indices(ax, st.rows, st.cols, st.ps)
# neutral overlay to start
init_scalar = 0.5 * np.ones((st.rows, st.cols), dtype=np.float32)
rgba = plt.get_cmap("magma")(init_scalar)
rgba_up = upsample_nearest(rgba, st.H, st.W, st.ps)
st.overlay_im = ax.imshow(rgba_up, alpha=overlay_alpha, zorder=1)
st.sel_rect = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="red", zorder=5)
ax.add_patch(st.sel_rect)
current_idx = (st.rows // 2) * st.cols + st.cols // 2
cmap = plt.get_cmap("magma")
def update(idx):
nonlocal current_idx
current_idx = int(np.clip(idx, 0, st.rows * st.cols - 1))
r, c = idx_to_rc(current_idx, st.cols)
q = st.X[current_idx]
qn = q / (np.linalg.norm(q) + 1e-8)
cos = st.Xn @ qn
cos_map = cos.reshape(st.rows, st.cols)
disp = (cos_map - cos_map.min()) / (cos_map.ptp() + 1e-8)
rgba = cmap(disp)
# Force selected cell to pure RED (and full alpha in the RGBA array)
rgba[r, c, 0:3] = np.array([1.0, 0.0, 0.0])
rgba[r, c, 3] = 1.0
st.overlay_im.set_data(upsample_nearest(rgba, st.H, st.W, st.ps))
st.overlay_im.set_alpha(overlay_alpha) # global alpha
st.sel_rect.set_xy((c * st.ps, r * st.ps))
ax.set_title(
f"Single-image • idx={current_idx} (r={r}, c={c}) • cos∈[{cos_map.min():.3f},{cos_map.max():.3f}]",
fontsize=11
)
fig.canvas.draw_idle()
def on_click(event):
if event.inaxes != ax or event.xdata is None or event.ydata is None:
return
r = int(np.clip(event.ydata // st.ps, 0, st.rows - 1))
c = int(np.clip(event.xdata // st.ps, 0, st.cols - 1))
update(rc_to_idx(r, c, st.cols))
def on_key(event):
nonlocal current_idx
r, c = idx_to_rc(current_idx, st.cols)
if event.key == "left":
c = max(0, c - 1)
elif event.key == "right":
c = min(st.cols - 1, c + 1)
elif event.key == "up":
r = max(0, r - 1)
elif event.key == "down":
r = min(st.rows - 1, r + 1)
elif event.key == "q":
plt.close(fig); return
else:
return
update(rc_to_idx(r, c, st.cols))
fig.canvas.mpl_connect("button_press_event", on_click)
fig.canvas.mpl_connect("key_press_event", on_key)
update(current_idx)
print("[single-image] Controls: click to select • arrows to move • 'q' to quit")
plt.tight_layout()
plt.show()
# ---------- Two-image mode (shows BOTH overlays; hides red rect on non-active) ----------
def run_two_images(img1_path, img2_path, model, device, ps, show_grid, annotate_indices, overlay_alpha):
img1, img2 = load_image(img1_path), load_image(img2_path)
S = [PatchImageState(img1, model, device, ps),
PatchImageState(img2, model, device, ps)]
if S[0].D != S[1].D:
raise RuntimeError("Embedding dims differ — use the same model for both images.")
fig, (axL, axR) = plt.subplots(1, 2, figsize=(12, 6))
axs = [axL, axR]
for i, (ax, st) in enumerate(zip(axs, S)):
st.ax = ax
ax.imshow(st.disp, zorder=0)
ax.set_axis_off()
if show_grid:
draw_grid(ax, st.rows, st.cols, st.ps)
if annotate_indices:
draw_indices(ax, st.rows, st.cols, st.ps)
# start overlays (hidden until first render)
init_scalar = 0.5 * np.ones((st.rows, st.cols), dtype=np.float32)
rgba = plt.get_cmap("magma")(init_scalar)
rgba_up = upsample_nearest(rgba, st.H, st.W, st.ps)
st.overlay_im = ax.imshow(rgba_up, alpha=0.0, zorder=1)
st.sel_rect = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="red", zorder=5)
st.best_rect = Rectangle((0, 0), st.ps, st.ps, fill=False, lw=2.0, ec="yellow", zorder=6)
ax.add_patch(st.sel_rect)
ax.add_patch(st.best_rect)
st.best_rect.set_visible(False)
active_side = 0 # 0=left, 1=right
current_idx = [ (S[0].rows//2)*S[0].cols + S[0].cols//2,
(S[1].rows//2)*S[1].cols + S[1].cols//2 ]
cmap = plt.get_cmap("magma")
def set_titles(src_i=None, self_stats=None, cross_stats=None):
axs[0].set_title(f"LEFT • {S[0].rows}x{S[0].cols} patches • {'ACTIVE' if active_side==0 else ''}", fontsize=10)
axs[1].set_title(f"RIGHT • {S[1].rows}x{S[1].cols} patches • {'ACTIVE' if active_side==1 else ''}", fontsize=10)
if src_i is not None and self_stats is not None and cross_stats is not None:
src_name = "LEFT" if src_i == 0 else "RIGHT"
tgt_name = "RIGHT" if src_i == 0 else "LEFT"
fig.suptitle(
f"Source: {src_name} | Self cos∈[{self_stats[0]:.3f},{self_stats[1]:.3f}] • "
f"{tgt_name} cos∈[{cross_stats[0]:.3f},{cross_stats[1]:.3f}] | "
f"Controls: click=select • arrows=move • '1'/'2'/'t'=switch side • 'q'=quit",
fontsize=11
)
else:
fig.suptitle(
"Controls: click=select • arrows=move • '1'/'2'/'t'=switch side • 'q'=quit",
fontsize=11
)
def clamp_idx(i, st):
return int(np.clip(i, 0, st.rows*st.cols - 1))
def update_selection_rects():
# position rects
for i, st in enumerate(S):
r, c = idx_to_rc(current_idx[i], st.cols)
st.sel_rect.set_xy((c * st.ps, r * st.ps))
# visibility: only active side shows red rect
for i, st in enumerate(S):
st.sel_rect.set_visible(i == active_side)
def compute_and_show_both_from_src(src_i):
"""Show self-similarity on src and cross-similarity on the other image."""
src = S[src_i]
tgt_i = 1 - src_i
tgt = S[tgt_i]
q_idx = clamp_idx(current_idx[src_i], src)
q = src.X[q_idx]
qn = q / (np.linalg.norm(q) + 1e-8)
# --- Self on src ---
cos_self = src.Xn @ qn
cos_map_self = cos_self.reshape(src.rows, src.cols)
disp_self = (cos_map_self - cos_map_self.min()) / (cos_map_self.ptp() + 1e-8)
rgba_self = cmap(disp_self)
r0, c0 = idx_to_rc(q_idx, src.cols)
rgba_self[r0, c0, 0:3] = np.array([1.0, 0.0, 0.0])
rgba_self[r0, c0, 3] = 1.0
src.overlay_im.set_data(upsample_nearest(rgba_self, src.H, src.W, src.ps))
src.overlay_im.set_alpha(overlay_alpha)
# --- Cross on tgt ---
cos_cross = tgt.Xn @ qn
cos_map_cross = cos_cross.reshape(tgt.rows, tgt.cols)
disp_cross = (cos_map_cross - cos_map_cross.min()) / (cos_map_cross.ptp() + 1e-8)
rgba_cross = cmap(disp_cross)
tgt.overlay_im.set_data(upsample_nearest(rgba_cross, tgt.H, tgt.W, tgt.ps))
tgt.overlay_im.set_alpha(overlay_alpha)
# highlight best match on target
best = int(np.argmax(cos_cross))
br, bc = idx_to_rc(best, tgt.cols)
tgt.best_rect.set_xy((bc * tgt.ps, br * tgt.ps))
tgt.best_rect.set_visible(True)
# Hide best on source (self best is the selected cell)
src.best_rect.set_visible(False)
set_titles(src_i, (cos_map_self.min(), cos_map_self.max()),
(cos_map_cross.min(), cos_map_cross.max()))
fig.canvas.draw_idle()
def on_click(event):
nonlocal active_side
if event.inaxes is None or event.xdata is None or event.ydata is None:
return
side = 0 if event.inaxes is axs[0] else (1 if event.inaxes is axs[1] else None)
if side is None: return
st = S[side]
r = int(np.clip(event.ydata // st.ps, 0, st.rows - 1))
c = int(np.clip(event.xdata // st.ps, 0, st.cols - 1))
current_idx[side] = rc_to_idx(r, c, st.cols)
active_side = side
update_selection_rects() # <-- updates visibility
compute_and_show_both_from_src(active_side)
def on_key(event):
nonlocal active_side
if event.key == "q":
plt.close(fig); return
if event.key in ("t", "T"):
active_side = 1 - active_side
update_selection_rects() # <-- updates visibility
compute_and_show_both_from_src(active_side); return
if event.key == "1":
active_side = 0
update_selection_rects()
compute_and_show_both_from_src(active_side); return
if event.key == "2":
active_side = 1
update_selection_rects()
compute_and_show_both_from_src(active_side); return
st = S[active_side]
r, c = idx_to_rc(current_idx[active_side], st.cols)
if event.key == "left":
c = max(0, c - 1)
elif event.key == "right":
c = min(st.cols - 1, c + 1)
elif event.key == "up":
r = max(0, r - 1)
elif event.key == "down":
r = min(st.rows - 1, r + 1)
else:
return
current_idx[active_side] = rc_to_idx(r, c, st.cols)
update_selection_rects() # keep visibility rule consistent
compute_and_show_both_from_src(active_side)
update_selection_rects() # initialize positions + visibility
set_titles()
compute_and_show_both_from_src(active_side)
fig.canvas.mpl_connect("button_press_event", on_click)
fig.canvas.mpl_connect("key_press_event", on_key)
print("[two-image BOTH] Controls:")
print(" • Click on LEFT/RIGHT to select query patch (shows self + cross overlays)")
print(" • Arrow keys move selection on ACTIVE side")
print(" • '1'/'2'/'t' to switch side • 'q' to quit")
plt.tight_layout()
plt.show()
# ---------- Main ----------
def main():
parser = argparse.ArgumentParser(description="DINOv3 Patch Similarity Viewer (1 or 2 images; two-image shows BOTH overlays)")
# Accept either --image (single) or --image1/--image2 (two)
parser.add_argument("--image", type=str, default=None,
help="Path/URL to image (single-image mode if only this is provided)")
parser.add_argument("--image1", type=str, default=None,
help="Path/URL to first image (two-image mode if image2 is also provided)")
parser.add_argument("--image2", type=str, default=None,
help="Path/URL to second image (two-image mode when given)")
parser.add_argument("--model", type=str, default=DEFAULT_MODEL_ID,
help="DINOv3 model repo id (e.g., facebook/dinov3-vits16-pretrain-lvd1689m)")
parser.add_argument("--show_grid", action="store_true", help="Draw patch grid")
parser.add_argument("--annotate_indices", action="store_true", help="Write patch indices on cells")
parser.add_argument("--overlay_alpha", type=float, default=OVERLAY_ALPHA, help="Heatmap alpha")
parser.add_argument("--patch_size", type=int, default=(PATCH_SIZE_OVERRIDE or -1),
help="Override patch size. Set 16 to force. Default: model's patch size")
args = parser.parse_args()
show_grid = args.show_grid or SHOW_GRID
annotate_indices = args.annotate_indices or ANNOTATE_INDICES
overlay_alpha = args.overlay_alpha
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[info] Device: {device}")
model = AutoModel.from_pretrained(args.model).to(device)
model.eval()
def get_patch_size_from_model(model, default=16):
# Try to get patch size from model config if available
if hasattr(model, "config") and hasattr(model.config, "patch_size"):
ps = model.config.patch_size
if isinstance(ps, (tuple, list)):
return ps[0]
return ps
# Try to get from model attributes
if hasattr(model, "patch_size"):
ps = model.patch_size
if isinstance(ps, (tuple, list)):
return ps[0]
return ps
return default
ps = args.patch_size if args.patch_size and args.patch_size > 0 else get_patch_size_from_model(model, 16)
print(f"[info] Using patch size: {ps}")
# Routing logic:
img1 = args.image1 or args.image
img2 = args.image2
if img1 and img2:
run_two_images(img1, img2, model, device, ps, show_grid, annotate_indices, overlay_alpha)
else:
img_single = img1 or DEFAULT_URL
run_single_image(img_single, model, device, ps, show_grid, annotate_indices, overlay_alpha)
if __name__ == "__main__":
main()
|