Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import numpy as np | |
| import pandas as pd | |
| import dill | |
| from sklearn.metrics import r2_score | |
| from sklearn.model_selection import GridSearchCV | |
| from src.exception import CustomException | |
| def save_object(file_path, obj): | |
| try: | |
| dir_path = os.path.dirname(file_path) | |
| os.makedirs(dir_path, exist_ok=True) | |
| with open(file_path, "wb") as file_obj: | |
| dill.dump(obj, file_obj) | |
| except Exception as e: | |
| raise CustomException(e, sys) | |
| def evaluate_models(X_train,y_train,X_test,y_test,models,param): | |
| try: | |
| report={} | |
| for i in range(len(list(models))): | |
| model=list(models.values())[i] | |
| para=param[list(models.keys())[i]] | |
| gs = GridSearchCV(model,para,cv=3) | |
| gs.fit(X_train,y_train) | |
| model.set_params(**gs.best_params_) | |
| model.fit(X_train,y_train) | |
| y_train_pred=model.predict(X_train) | |
| y_test_pred=model.predict(X_test) | |
| train_model_score=r2_score(y_train,y_train_pred) | |
| test_model_score=r2_score(y_test,y_test_pred) | |
| report[list(models.keys())[i]]=test_model_score | |
| return report | |
| except Exception as e: | |
| raise CustomException(e, sys) | |
| def load_object(file_path): | |
| try: | |
| with open(file_path, "rb") as file_obj: | |
| return dill.load(file_obj) | |
| except Exception as e: | |
| raise CustomException(e, sys) | |