Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import io | |
| import base64 | |
| import numpy as np | |
| import scipy.io.wavfile | |
| from typing import Text | |
| from pyannote.audio import Pipeline | |
| from pyannote.audio import Audio | |
| from pyannote.core import Segment | |
| import gradio as gr | |
| import os | |
| import yt_dlp as youtube_dl | |
| from gradio_client import Client | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| # set up the diarization pipeline | |
| diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.0", use_auth_token=HF_TOKEN) | |
| #diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=HF_TOKEN) | |
| if torch.cuda.is_available(): | |
| diarization_pipeline.to(torch.device("cuda")) | |
| import gradio as gr | |
| def transcribe(audio_path, num_speakers=2): | |
| # Configure the pipeline to use the provided number of speakers | |
| diarization_pipeline.n_speakers = num_speakers | |
| # Run diarization | |
| diarization = diarization_pipeline(audio_path) | |
| return diarization | |
| title = "SAML Speaker Diarization ⚡️ " | |
| description = """ pyannote speaker diarization running locally""" | |
| article = """SAMLOne Speaker Segmentation or Diarization""" | |