|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class AdaLayerNorm(nn.Module): |
|
def __init__(self, embedding_dim: int, time_embedding_dim: int = None): |
|
super().__init__() |
|
|
|
if time_embedding_dim is None: |
|
time_embedding_dim = embedding_dim |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(time_embedding_dim, 2 * embedding_dim, bias=True) |
|
nn.init.zeros_(self.linear.weight) |
|
nn.init.zeros_(self.linear.bias) |
|
|
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) |
|
|
|
def forward( |
|
self, x: torch.Tensor, timestep_embedding: torch.Tensor |
|
): |
|
emb = self.linear(self.silu(timestep_embedding)) |
|
shift, scale = emb.view(len(x), 1, -1).chunk(2, dim=-1) |
|
x = self.norm(x) * (1 + scale) + shift |
|
return x |
|
|
|
|
|
class AttnProcessor(nn.Module): |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
): |
|
super().__init__() |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class IPAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = attn.head_to_batch_dim(ip_key) |
|
ip_value = attn.head_to_batch_dim(ip_value) |
|
|
|
ip_attention_probs = attn.get_attention_scores(query, ip_key, None) |
|
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) |
|
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class TA_IPAttnProcessor(nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor." |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
|
|
ip_key = self.ln_k_ip(ip_key, temb) |
|
ip_value = self.ln_v_ip(ip_value, temb) |
|
|
|
ip_key = attn.head_to_batch_dim(ip_key) |
|
ip_value = attn.head_to_batch_dim(ip_value) |
|
|
|
ip_attention_probs = attn.get_attention_scores(query, ip_key, None) |
|
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) |
|
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
external_kv=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
if external_kv: |
|
key = torch.cat([key, external_kv.k], axis=1) |
|
value = torch.cat([value, external_kv.v], axis=1) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class split_AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
time_embedding_dim=None, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
external_kv=None, |
|
temb=None, |
|
cat_dim=-2, |
|
original_shape=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
|
|
height, width = hidden_states.shape[-2:] |
|
if cat_dim==-2 or cat_dim==2: |
|
hidden_states_0 = hidden_states[:, :, :height//2, :] |
|
hidden_states_1 = hidden_states[:, :, -(height//2):, :] |
|
elif cat_dim==-1 or cat_dim==3: |
|
hidden_states_0 = hidden_states[:, :, :, :width//2] |
|
hidden_states_1 = hidden_states[:, :, :, -(width//2):] |
|
batch_size, channel, height, width = hidden_states_0.shape |
|
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2) |
|
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2) |
|
else: |
|
|
|
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1] |
|
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:] |
|
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:] |
|
|
|
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=1) |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
if external_kv: |
|
key = torch.cat([key, external_kv.k], dim=1) |
|
value = torch.cat([value, external_kv.v], dim=1) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
hidden_states_0, hidden_states_1 = hidden_states.chunk(2, dim=1) |
|
|
|
if input_ndim == 4: |
|
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if cat_dim==-2 or cat_dim==2: |
|
hidden_states_pad = torch.zeros(batch_size, channel, 1, width) |
|
elif cat_dim==-1 or cat_dim==3: |
|
hidden_states_pad = torch.zeros(batch_size, channel, height, 1) |
|
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype) |
|
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim) |
|
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}" |
|
else: |
|
batch_size, sequence_length, inner_dim = hidden_states.shape |
|
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim) |
|
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype) |
|
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1) |
|
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}" |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class sep_split_AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
time_embedding_dim=None, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
self.ln_k_ref = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
self.ln_v_ref = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
external_kv=None, |
|
temb=None, |
|
cat_dim=-2, |
|
original_shape=None, |
|
ref_scale=1.0, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
|
|
height, width = hidden_states.shape[-2:] |
|
if cat_dim==-2 or cat_dim==2: |
|
hidden_states_0 = hidden_states[:, :, :height//2, :] |
|
hidden_states_1 = hidden_states[:, :, -(height//2):, :] |
|
elif cat_dim==-1 or cat_dim==3: |
|
hidden_states_0 = hidden_states[:, :, :, :width//2] |
|
hidden_states_1 = hidden_states[:, :, :, -(width//2):] |
|
batch_size, channel, height, width = hidden_states_0.shape |
|
hidden_states_0 = hidden_states_0.view(batch_size, channel, height * width).transpose(1, 2) |
|
hidden_states_1 = hidden_states_1.view(batch_size, channel, height * width).transpose(1, 2) |
|
else: |
|
|
|
single_dim = original_shape[2] if cat_dim==-2 or cat_dim==2 else original_shape[1] |
|
hidden_states_0 = hidden_states[:, :single_dim*single_dim,:] |
|
hidden_states_1 = hidden_states[:, single_dim*(single_dim+1):,:] |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states_0.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_0 = attn.group_norm(hidden_states_0.transpose(1, 2)).transpose(1, 2) |
|
hidden_states_1 = attn.group_norm(hidden_states_1.transpose(1, 2)).transpose(1, 2) |
|
|
|
query_0 = attn.to_q(hidden_states_0) |
|
query_1 = attn.to_q(hidden_states_1) |
|
key_0 = attn.to_k(hidden_states_0) |
|
key_1 = attn.to_k(hidden_states_1) |
|
value_0 = attn.to_v(hidden_states_0) |
|
value_1 = attn.to_v(hidden_states_1) |
|
|
|
|
|
key_1 = self.ln_k_ref(key_1, temb) |
|
value_1 = self.ln_v_ref(value_1, temb) |
|
|
|
if external_kv: |
|
key_1 = torch.cat([key_1, external_kv.k], dim=1) |
|
value_1 = torch.cat([value_1, external_kv.v], dim=1) |
|
|
|
inner_dim = key_0.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query_0 = query_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
query_1 = query_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key_0 = key_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key_1 = key_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value_0 = value_0.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value_1 = value_1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states_0 = F.scaled_dot_product_attention( |
|
query_0, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states_1 = F.scaled_dot_product_attention( |
|
query_1, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
|
|
_hidden_states_0 = F.scaled_dot_product_attention( |
|
query_0, key_1, value_1, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states_0 = hidden_states_0 + ref_scale * _hidden_states_0 * 10 |
|
|
|
|
|
_hidden_states_1 = F.scaled_dot_product_attention( |
|
query_1, key_0, value_0, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
hidden_states_1 = hidden_states_1 + ref_scale * _hidden_states_1 |
|
|
|
hidden_states_0 = hidden_states_0.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_1 = hidden_states_1.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_0 = hidden_states_0.to(query_0.dtype) |
|
hidden_states_1 = hidden_states_1.to(query_1.dtype) |
|
|
|
|
|
|
|
hidden_states_0 = attn.to_out[0](hidden_states_0) |
|
hidden_states_1 = attn.to_out[0](hidden_states_1) |
|
|
|
hidden_states_0 = attn.to_out[1](hidden_states_0) |
|
hidden_states_1 = attn.to_out[1](hidden_states_1) |
|
|
|
|
|
if input_ndim == 4: |
|
hidden_states_0 = hidden_states_0.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
hidden_states_1 = hidden_states_1.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if cat_dim==-2 or cat_dim==2: |
|
hidden_states_pad = torch.zeros(batch_size, channel, 1, width) |
|
elif cat_dim==-1 or cat_dim==3: |
|
hidden_states_pad = torch.zeros(batch_size, channel, height, 1) |
|
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype) |
|
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=cat_dim) |
|
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}" |
|
else: |
|
batch_size, sequence_length, inner_dim = hidden_states.shape |
|
hidden_states_pad = torch.zeros(batch_size, single_dim, inner_dim) |
|
hidden_states_pad = hidden_states_pad.to(hidden_states_0.device, dtype=hidden_states_0.dtype) |
|
hidden_states = torch.cat([hidden_states_0, hidden_states_pad, hidden_states_1], dim=1) |
|
assert hidden_states.shape == residual.shape, f"{hidden_states.shape} != {residual.shape}" |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class AdditiveKV_AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = None, |
|
cross_attention_dim: int = None, |
|
time_embedding_dim: int = None, |
|
additive_scale: float = 1.0, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
self.additive_scale = additive_scale |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
external_kv=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor." |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
|
if external_kv: |
|
key = external_kv.k |
|
value = external_kv.v |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
external_attn_output = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states + self.additive_scale * external_attn_output |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class TA_AdditiveKV_AttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = None, |
|
cross_attention_dim: int = None, |
|
time_embedding_dim: int = None, |
|
additive_scale: float = 1.0, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
self.ln_k = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
self.ln_v = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
self.additive_scale = additive_scale |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
external_kv=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor." |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
|
if external_kv: |
|
key = external_kv.k |
|
value = external_kv.v |
|
|
|
|
|
key = self.ln_k(key, temb) |
|
value = self.ln_v(value, temb) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
external_attn_output = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
external_attn_output = external_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states + self.additive_scale * external_attn_output |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class IPAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
if isinstance(encoder_hidden_states, tuple): |
|
|
|
batch_size, _, hid_dim = encoder_hidden_states[0].shape |
|
ip_tokens = encoder_hidden_states[1][0] |
|
encoder_hidden_states = torch.cat([encoder_hidden_states[0], ip_tokens], dim=1) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class TA_IPAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16): |
|
The context length of the image features. |
|
""" |
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, time_embedding_dim: int = None, scale=1.0, num_tokens=4): |
|
super().__init__() |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.scale = scale |
|
self.num_tokens = num_tokens |
|
|
|
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
self.ln_k_ip = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
self.ln_v_ip = AdaLayerNorm(hidden_size, time_embedding_dim) |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
external_kv=None, |
|
temb=None, |
|
): |
|
assert temb is not None, "Timestep embedding is needed for a time-aware attention processor." |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
if not isinstance(encoder_hidden_states, tuple): |
|
|
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states, ip_hidden_states = ( |
|
encoder_hidden_states[:, :end_pos, :], |
|
encoder_hidden_states[:, end_pos:, :], |
|
) |
|
else: |
|
|
|
batch_size, _, hid_dim = encoder_hidden_states[0].shape |
|
ip_hidden_states = encoder_hidden_states[1][0] |
|
encoder_hidden_states = encoder_hidden_states[0] |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
if external_kv: |
|
key = torch.cat([key, external_kv.k], axis=1) |
|
value = torch.cat([value, external_kv.v], axis=1) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
ip_key = self.to_k_ip(ip_hidden_states) |
|
ip_value = self.to_v_ip(ip_hidden_states) |
|
|
|
|
|
ip_key = self.ln_k_ip(ip_key, temb) |
|
ip_value = self.ln_v_ip(ip_value, temb) |
|
|
|
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
ip_hidden_states = F.scaled_dot_product_attention( |
|
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
ip_hidden_states = ip_hidden_states.to(query.dtype) |
|
|
|
hidden_states = hidden_states + self.scale * ip_hidden_states |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class CNAttnProcessor: |
|
r""" |
|
Default processor for performing attention-related computations. |
|
""" |
|
|
|
def __init__(self, num_tokens=4): |
|
self.num_tokens = num_tokens |
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states = encoder_hidden_states[:, :end_pos] |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class CNAttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, num_tokens=4): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
self.num_tokens = num_tokens |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
else: |
|
end_pos = encoder_hidden_states.shape[1] - self.num_tokens |
|
encoder_hidden_states = encoder_hidden_states[:, :end_pos] |
|
if attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
def init_attn_proc(unet, ip_adapter_tokens=16, use_lcm=False, use_adaln=True, use_external_kv=False): |
|
attn_procs = {} |
|
unet_sd = unet.state_dict() |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
if use_external_kv: |
|
attn_procs[name] = AdditiveKV_AttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
time_embedding_dim=1280, |
|
) if hasattr(F, "scaled_dot_product_attention") else AdditiveKV_AttnProcessor() |
|
else: |
|
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor() |
|
else: |
|
if use_adaln: |
|
layer_name = name.split(".processor")[0] |
|
if use_lcm: |
|
weights = { |
|
"to_k_ip.weight": unet_sd[layer_name + ".to_k.base_layer.weight"], |
|
"to_v_ip.weight": unet_sd[layer_name + ".to_v.base_layer.weight"], |
|
} |
|
else: |
|
weights = { |
|
"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"], |
|
"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"], |
|
} |
|
attn_procs[name] = TA_IPAttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
num_tokens=ip_adapter_tokens, |
|
time_embedding_dim=1280, |
|
) if hasattr(F, "scaled_dot_product_attention") else \ |
|
TA_IPAttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
num_tokens=ip_adapter_tokens, |
|
time_embedding_dim=1280, |
|
) |
|
attn_procs[name].load_state_dict(weights, strict=False) |
|
else: |
|
attn_procs[name] = AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor() |
|
|
|
return attn_procs |
|
|
|
|
|
def init_aggregator_attn_proc(unet, use_adaln=False, split_attn=False): |
|
attn_procs = {} |
|
unet_sd = unet.state_dict() |
|
for name in unet.attn_processors.keys(): |
|
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
|
|
if split_attn: |
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_procs[name] = ( |
|
sep_split_AttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=hidden_size, |
|
time_embedding_dim=1280, |
|
) |
|
if use_adaln |
|
else split_AttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
time_embedding_dim=1280, |
|
) |
|
) |
|
|
|
else: |
|
attn_procs[name] = ( |
|
AttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=hidden_size, |
|
) |
|
if hasattr(F, "scaled_dot_product_attention") |
|
else AttnProcessor( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=hidden_size, |
|
) |
|
) |
|
|
|
return attn_procs |
|
|