Spaces:
Running
on
Zero
Running
on
Zero
| # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py | |
| import copy | |
| import inspect | |
| import math | |
| import re | |
| from contextlib import nullcontext | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from diffusers.schedulers import DPMSolverMultistepScheduler | |
| from diffusers.utils import deprecate, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from einops import rearrange | |
| from transformers import ( | |
| T5EncoderModel, | |
| T5Tokenizer, | |
| AutoModelForCausalLM, | |
| AutoProcessor, | |
| AutoTokenizer, | |
| ) | |
| from ltx_video.models.autoencoders.causal_video_autoencoder import ( | |
| CausalVideoAutoencoder, | |
| ) | |
| from ltx_video.models.autoencoders.vae_encode import ( | |
| get_vae_size_scale_factor, | |
| latent_to_pixel_coords, | |
| vae_decode, | |
| vae_encode, | |
| ) | |
| from ltx_video.models.transformers.symmetric_patchifier import Patchifier | |
| from ltx_video.models.transformers.transformer3d import Transformer3DModel | |
| from ltx_video.schedulers.rf import TimestepShifter | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt | |
| from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler | |
| from ltx_video.models.autoencoders.vae_encode import ( | |
| un_normalize_latents, | |
| normalize_latents, | |
| ) | |
| try: | |
| import torch_xla.distributed.spmd as xs | |
| except ImportError: | |
| xs = None | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| ASPECT_RATIO_1024_BIN = { | |
| "0.25": [512.0, 2048.0], | |
| "0.28": [512.0, 1856.0], | |
| "0.32": [576.0, 1792.0], | |
| "0.33": [576.0, 1728.0], | |
| "0.35": [576.0, 1664.0], | |
| "0.4": [640.0, 1600.0], | |
| "0.42": [640.0, 1536.0], | |
| "0.48": [704.0, 1472.0], | |
| "0.5": [704.0, 1408.0], | |
| "0.52": [704.0, 1344.0], | |
| "0.57": [768.0, 1344.0], | |
| "0.6": [768.0, 1280.0], | |
| "0.68": [832.0, 1216.0], | |
| "0.72": [832.0, 1152.0], | |
| "0.78": [896.0, 1152.0], | |
| "0.82": [896.0, 1088.0], | |
| "0.88": [960.0, 1088.0], | |
| "0.94": [960.0, 1024.0], | |
| "1.0": [1024.0, 1024.0], | |
| "1.07": [1024.0, 960.0], | |
| "1.13": [1088.0, 960.0], | |
| "1.21": [1088.0, 896.0], | |
| "1.29": [1152.0, 896.0], | |
| "1.38": [1152.0, 832.0], | |
| "1.46": [1216.0, 832.0], | |
| "1.67": [1280.0, 768.0], | |
| "1.75": [1344.0, 768.0], | |
| "2.0": [1408.0, 704.0], | |
| "2.09": [1472.0, 704.0], | |
| "2.4": [1536.0, 640.0], | |
| "2.5": [1600.0, 640.0], | |
| "3.0": [1728.0, 576.0], | |
| "4.0": [2048.0, 512.0], | |
| } | |
| ASPECT_RATIO_512_BIN = { | |
| "0.25": [256.0, 1024.0], | |
| "0.28": [256.0, 928.0], | |
| "0.32": [288.0, 896.0], | |
| "0.33": [288.0, 864.0], | |
| "0.35": [288.0, 832.0], | |
| "0.4": [320.0, 800.0], | |
| "0.42": [320.0, 768.0], | |
| "0.48": [352.0, 736.0], | |
| "0.5": [352.0, 704.0], | |
| "0.52": [352.0, 672.0], | |
| "0.57": [384.0, 672.0], | |
| "0.6": [384.0, 640.0], | |
| "0.68": [416.0, 608.0], | |
| "0.72": [416.0, 576.0], | |
| "0.78": [448.0, 576.0], | |
| "0.82": [448.0, 544.0], | |
| "0.88": [480.0, 544.0], | |
| "0.94": [480.0, 512.0], | |
| "1.0": [512.0, 512.0], | |
| "1.07": [512.0, 480.0], | |
| "1.13": [544.0, 480.0], | |
| "1.21": [544.0, 448.0], | |
| "1.29": [576.0, 448.0], | |
| "1.38": [576.0, 416.0], | |
| "1.46": [608.0, 416.0], | |
| "1.67": [640.0, 384.0], | |
| "1.75": [672.0, 384.0], | |
| "2.0": [704.0, 352.0], | |
| "2.09": [736.0, 352.0], | |
| "2.4": [768.0, 320.0], | |
| "2.5": [800.0, 320.0], | |
| "3.0": [864.0, 288.0], | |
| "4.0": [1024.0, 256.0], | |
| } | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| skip_initial_inference_steps: int = 0, | |
| skip_final_inference_steps: int = 0, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| max_timestep ('float', *optional*, defaults to 1.0): | |
| The initial noising level for image-to-image/video-to-video. The list if timestamps will be | |
| truncated to start with a timestamp greater or equal to this. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set( | |
| inspect.signature(scheduler.set_timesteps).parameters.keys() | |
| ) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| if ( | |
| skip_initial_inference_steps < 0 | |
| or skip_final_inference_steps < 0 | |
| or skip_initial_inference_steps + skip_final_inference_steps | |
| >= num_inference_steps | |
| ): | |
| raise ValueError( | |
| "invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps" | |
| ) | |
| timesteps = timesteps[ | |
| skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps | |
| ] | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| num_inference_steps = len(timesteps) | |
| return timesteps, num_inference_steps | |
| class ConditioningItem: | |
| """ | |
| Defines a single frame-conditioning item - a single frame or a sequence of frames. | |
| Attributes: | |
| media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on. | |
| media_frame_number (int): The start-frame number of the media item in the generated video. | |
| conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning). | |
| media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame. | |
| media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame. | |
| """ | |
| media_item: torch.Tensor | |
| media_frame_number: int | |
| conditioning_strength: float | |
| media_x: Optional[int] = None | |
| media_y: Optional[int] = None | |
| class LTXVideoPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using LTX-Video. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`T5EncoderModel`]): | |
| Frozen text-encoder. This uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
| tokenizer (`T5Tokenizer`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| transformer ([`Transformer2DModel`]): | |
| A text conditioned `Transformer2DModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| """ | |
| bad_punct_regex = re.compile( | |
| r"[" | |
| + "#®•©™&@·º½¾¿¡§~" | |
| + r"\)" | |
| + r"\(" | |
| + r"\]" | |
| + r"\[" | |
| + r"\}" | |
| + r"\{" | |
| + r"\|" | |
| + "\\" | |
| + r"\/" | |
| + r"\*" | |
| + r"]{1,}" | |
| ) # noqa | |
| _optional_components = [ | |
| "tokenizer", | |
| "text_encoder", | |
| "prompt_enhancer_image_caption_model", | |
| "prompt_enhancer_image_caption_processor", | |
| "prompt_enhancer_llm_model", | |
| "prompt_enhancer_llm_tokenizer", | |
| ] | |
| model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae" | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKL, | |
| transformer: Transformer3DModel, | |
| scheduler: DPMSolverMultistepScheduler, | |
| patchifier: Patchifier, | |
| prompt_enhancer_image_caption_model: AutoModelForCausalLM, | |
| prompt_enhancer_image_caption_processor: AutoProcessor, | |
| prompt_enhancer_llm_model: AutoModelForCausalLM, | |
| prompt_enhancer_llm_tokenizer: AutoTokenizer, | |
| allowed_inference_steps: Optional[List[float]] = None, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| patchifier=patchifier, | |
| prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model, | |
| prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor, | |
| prompt_enhancer_llm_model=prompt_enhancer_llm_model, | |
| prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer, | |
| ) | |
| self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor( | |
| self.vae | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.allowed_inference_steps = allowed_inference_steps | |
| def mask_text_embeddings(self, emb, mask): | |
| if emb.shape[0] == 1: | |
| keep_index = mask.sum().item() | |
| return emb[:, :, :keep_index, :], keep_index | |
| else: | |
| masked_feature = emb * mask[:, None, :, None] | |
| return masked_feature, emb.shape[2] | |
| # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: str = "", | |
| num_images_per_prompt: int = 1, | |
| device: Optional[torch.device] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| text_encoder_max_tokens: int = 256, | |
| **kwargs, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` | |
| instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For | |
| This should be "". | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. | |
| """ | |
| if "mask_feature" in kwargs: | |
| deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
| deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # See Section 3.1. of the paper. | |
| max_length = ( | |
| text_encoder_max_tokens # TPU supports only lengths multiple of 128 | |
| ) | |
| if prompt_embeds is None: | |
| assert ( | |
| self.text_encoder is not None | |
| ), "You should provide either prompt_embeds or self.text_encoder should not be None," | |
| text_enc_device = next(self.text_encoder.parameters()).device | |
| prompt = self._text_preprocessing(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt" | |
| ).input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
| -1 | |
| ] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {max_length} tokens: {removed_text}" | |
| ) | |
| prompt_attention_mask = text_inputs.attention_mask | |
| prompt_attention_mask = prompt_attention_mask.to(text_enc_device) | |
| prompt_attention_mask = prompt_attention_mask.to(device) | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| elif self.transformer is not None: | |
| dtype = self.transformer.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view( | |
| bs_embed * num_images_per_prompt, seq_len, -1 | |
| ) | |
| prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) | |
| prompt_attention_mask = prompt_attention_mask.view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens = self._text_preprocessing(negative_prompt) | |
| uncond_tokens = uncond_tokens * batch_size | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| add_special_tokens=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_attention_mask = uncond_input.attention_mask | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to( | |
| text_enc_device | |
| ) | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(text_enc_device), | |
| attention_mask=negative_prompt_attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| dtype=dtype, device=device | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat( | |
| 1, num_images_per_prompt, 1 | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds.view( | |
| batch_size * num_images_per_prompt, seq_len, -1 | |
| ) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( | |
| 1, num_images_per_prompt | |
| ) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| else: | |
| negative_prompt_embeds = None | |
| negative_prompt_attention_mask = None | |
| return ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys() | |
| ) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| enhance_prompt=False, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and ( | |
| not isinstance(prompt, str) and not isinstance(prompt, list) | |
| ): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
| ) | |
| if prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError( | |
| "Must provide `prompt_attention_mask` when specifying `prompt_embeds`." | |
| ) | |
| if ( | |
| negative_prompt_embeds is not None | |
| and negative_prompt_attention_mask is None | |
| ): | |
| raise ValueError( | |
| "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" | |
| f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" | |
| f" {negative_prompt_attention_mask.shape}." | |
| ) | |
| if enhance_prompt: | |
| assert ( | |
| self.prompt_enhancer_image_caption_model is not None | |
| ), "Image caption model must be initialized if enhance_prompt is True" | |
| assert ( | |
| self.prompt_enhancer_image_caption_processor is not None | |
| ), "Image caption processor must be initialized if enhance_prompt is True" | |
| assert ( | |
| self.prompt_enhancer_llm_model is not None | |
| ), "Text prompt enhancer model must be initialized if enhance_prompt is True" | |
| assert ( | |
| self.prompt_enhancer_llm_tokenizer is not None | |
| ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True" | |
| def _text_preprocessing(self, text): | |
| if not isinstance(text, (tuple, list)): | |
| text = [text] | |
| def process(text: str): | |
| text = text.strip() | |
| return text | |
| return [process(t) for t in text] | |
| def add_noise_to_image_conditioning_latents( | |
| t: float, | |
| init_latents: torch.Tensor, | |
| latents: torch.Tensor, | |
| noise_scale: float, | |
| conditioning_mask: torch.Tensor, | |
| generator, | |
| eps=1e-6, | |
| ): | |
| """ | |
| Add timestep-dependent noise to the hard-conditioning latents. | |
| This helps with motion continuity, especially when conditioned on a single frame. | |
| """ | |
| noise = randn_tensor( | |
| latents.shape, | |
| generator=generator, | |
| device=latents.device, | |
| dtype=latents.dtype, | |
| ) | |
| # Add noise only to hard-conditioning latents (conditioning_mask = 1.0) | |
| need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1) | |
| noised_latents = init_latents + noise_scale * noise * (t**2) | |
| latents = torch.where(need_to_noise, noised_latents, latents) | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| latents: torch.Tensor | None, | |
| media_items: torch.Tensor | None, | |
| timestep: float, | |
| latent_shape: torch.Size | Tuple[Any, ...], | |
| dtype: torch.dtype, | |
| device: torch.device, | |
| generator: torch.Generator | List[torch.Generator], | |
| vae_per_channel_normalize: bool = True, | |
| ): | |
| """ | |
| Prepare the initial latent tensor to be denoised. | |
| The latents are either pure noise or a noised version of the encoded media items. | |
| Args: | |
| latents (`torch.FloatTensor` or `None`): | |
| The latents to use (provided by the user) or `None` to create new latents. | |
| media_items (`torch.FloatTensor` or `None`): | |
| An image or video to be updated using img2img or vid2vid. The media item is encoded and noised. | |
| timestep (`float`): | |
| The timestep to noise the encoded media_items to. | |
| latent_shape (`torch.Size`): | |
| The target latent shape. | |
| dtype (`torch.dtype`): | |
| The target dtype. | |
| device (`torch.device`): | |
| The target device. | |
| generator (`torch.Generator` or `List[torch.Generator]`): | |
| Generator(s) to be used for the noising process. | |
| vae_per_channel_normalize ('bool'): | |
| When encoding the media_items, whether to normalize the latents per-channel. | |
| Returns: | |
| `torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape | |
| (batch_size, num_channels, height, width). | |
| """ | |
| if isinstance(generator, list) and len(generator) != latent_shape[0]: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators." | |
| ) | |
| # Initialize the latents with the given latents or encoded media item, if provided | |
| assert ( | |
| latents is None or media_items is None | |
| ), "Cannot provide both latents and media_items. Please provide only one of the two." | |
| assert ( | |
| latents is None and media_items is None or timestep < 1.0 | |
| ), "Input media_item or latents are provided, but they will be replaced with noise." | |
| if media_items is not None: | |
| latents = vae_encode( | |
| media_items.to(dtype=self.vae.dtype, device=self.vae.device), | |
| self.vae, | |
| vae_per_channel_normalize=vae_per_channel_normalize, | |
| ) | |
| if latents is not None: | |
| assert ( | |
| latents.shape == latent_shape | |
| ), f"Latents have to be of shape {latent_shape} but are {latents.shape}." | |
| latents = latents.to(device=device, dtype=dtype) | |
| # For backward compatibility, generate in the "patchified" shape and rearrange | |
| b, c, f, h, w = latent_shape | |
| noise = randn_tensor( | |
| (b, f * h * w, c), generator=generator, device=device, dtype=dtype | |
| ) | |
| noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = noise * self.scheduler.init_noise_sigma | |
| if latents is None: | |
| latents = noise | |
| else: | |
| # Noise the latents to the required (first) timestep | |
| latents = timestep * noise + (1 - timestep) * latents | |
| return latents | |
| def classify_height_width_bin( | |
| height: int, width: int, ratios: dict | |
| ) -> Tuple[int, int]: | |
| """Returns binned height and width.""" | |
| ar = float(height / width) | |
| closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
| default_hw = ratios[closest_ratio] | |
| return int(default_hw[0]), int(default_hw[1]) | |
| def resize_and_crop_tensor( | |
| samples: torch.Tensor, new_width: int, new_height: int | |
| ) -> torch.Tensor: | |
| n_frames, orig_height, orig_width = samples.shape[-3:] | |
| # Check if resizing is needed | |
| if orig_height != new_height or orig_width != new_width: | |
| ratio = max(new_height / orig_height, new_width / orig_width) | |
| resized_width = int(orig_width * ratio) | |
| resized_height = int(orig_height * ratio) | |
| # Resize | |
| samples = LTXVideoPipeline.resize_tensor( | |
| samples, resized_height, resized_width | |
| ) | |
| # Center Crop | |
| start_x = (resized_width - new_width) // 2 | |
| end_x = start_x + new_width | |
| start_y = (resized_height - new_height) // 2 | |
| end_y = start_y + new_height | |
| samples = samples[..., start_y:end_y, start_x:end_x] | |
| return samples | |
| def resize_tensor(media_items, height, width): | |
| n_frames = media_items.shape[2] | |
| if media_items.shape[-2:] != (height, width): | |
| media_items = rearrange(media_items, "b c n h w -> (b n) c h w") | |
| media_items = F.interpolate( | |
| media_items, | |
| size=(height, width), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames) | |
| return media_items | |
| def __call__( | |
| self, | |
| height: int, | |
| width: int, | |
| num_frames: int, | |
| frame_rate: float, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: str = "", | |
| num_inference_steps: int = 20, | |
| skip_initial_inference_steps: int = 0, | |
| skip_final_inference_steps: int = 0, | |
| timesteps: List[int] = None, | |
| guidance_scale: Union[float, List[float]] = 4.5, | |
| cfg_star_rescale: bool = False, | |
| skip_layer_strategy: Optional[SkipLayerStrategy] = None, | |
| skip_block_list: Optional[Union[List[List[int]], List[int]]] = None, | |
| stg_scale: Union[float, List[float]] = 1.0, | |
| rescaling_scale: Union[float, List[float]] = 0.7, | |
| guidance_timesteps: Optional[List[int]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| conditioning_items: Optional[List[ConditioningItem]] = None, | |
| decode_timestep: Union[List[float], float] = 0.0, | |
| decode_noise_scale: Optional[List[float]] = None, | |
| mixed_precision: bool = False, | |
| offload_to_cpu: bool = False, | |
| enhance_prompt: bool = False, | |
| text_encoder_max_tokens: int = 256, | |
| stochastic_sampling: bool = False, | |
| media_items: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_inference_steps (`int`, *optional*, defaults to 100): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. If `timesteps` is provided, this parameter is ignored. | |
| skip_initial_inference_steps (`int`, *optional*, defaults to 0): | |
| The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will | |
| be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run. | |
| skip_final_inference_steps (`int`, *optional*, defaults to 0): | |
| The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will | |
| be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` | |
| timesteps are used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 4.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| cfg_star_rescale (`bool`, *optional*, defaults to `False`): | |
| If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot | |
| product between positive and negative. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size): | |
| The width in pixels of the generated image. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. This negative prompt should be "". If not | |
| provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. | |
| negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): | |
| Pre-generated attention mask for negative text embeddings. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| use_resolution_binning (`bool` defaults to `True`): | |
| If set to `True`, the requested height and width are first mapped to the closest resolutions using | |
| `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to | |
| the requested resolution. Useful for generating non-square images. | |
| enhance_prompt (`bool`, *optional*, defaults to `False`): | |
| If set to `True`, the prompt is enhanced using a LLM model. | |
| text_encoder_max_tokens (`int`, *optional*, defaults to `256`): | |
| The maximum number of tokens to use for the text encoder. | |
| stochastic_sampling (`bool`, *optional*, defaults to `False`): | |
| If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic. | |
| media_items ('torch.Tensor', *optional*): | |
| The input media item used for image-to-image / video-to-video. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images | |
| """ | |
| if "mask_feature" in kwargs: | |
| deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." | |
| deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) | |
| is_video = kwargs.get("is_video", False) | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) | |
| # 2. Default height and width to transformer | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| self.video_scale_factor = self.video_scale_factor if is_video else 1 | |
| vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True) | |
| image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0) | |
| latent_height = height // self.vae_scale_factor | |
| latent_width = width // self.vae_scale_factor | |
| latent_num_frames = num_frames // self.video_scale_factor | |
| if isinstance(self.vae, CausalVideoAutoencoder) and is_video: | |
| latent_num_frames += 1 | |
| latent_shape = ( | |
| batch_size * num_images_per_prompt, | |
| self.transformer.config.in_channels, | |
| latent_num_frames, | |
| latent_height, | |
| latent_width, | |
| ) | |
| # Prepare the list of denoising time-steps | |
| retrieve_timesteps_kwargs = {} | |
| if isinstance(self.scheduler, TimestepShifter): | |
| retrieve_timesteps_kwargs["samples_shape"] = latent_shape | |
| assert ( | |
| skip_initial_inference_steps == 0 | |
| or latents is not None | |
| or media_items is not None | |
| ), ( | |
| f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - " | |
| "media_item or latents should be provided." | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| skip_initial_inference_steps=skip_initial_inference_steps, | |
| skip_final_inference_steps=skip_final_inference_steps, | |
| **retrieve_timesteps_kwargs, | |
| ) | |
| if self.allowed_inference_steps is not None: | |
| for timestep in [round(x, 4) for x in timesteps.tolist()]: | |
| assert ( | |
| timestep in self.allowed_inference_steps | |
| ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}." | |
| if guidance_timesteps: | |
| guidance_mapping = [] | |
| for timestep in timesteps: | |
| indices = [ | |
| i for i, val in enumerate(guidance_timesteps) if val <= timestep | |
| ] | |
| # assert len(indices) > 0, f"No guidance timestep found for {timestep}" | |
| guidance_mapping.append( | |
| indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1) | |
| ) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| if not isinstance(guidance_scale, List): | |
| guidance_scale = [guidance_scale] * len(timesteps) | |
| else: | |
| guidance_scale = [ | |
| guidance_scale[guidance_mapping[i]] for i in range(len(timesteps)) | |
| ] | |
| # For simplicity, we are using a constant num_conds for all timesteps, so we need to zero | |
| # out cases where the guidance scale should not be applied. | |
| guidance_scale = [x if x > 1.0 else 0.0 for x in guidance_scale] | |
| if not isinstance(stg_scale, List): | |
| stg_scale = [stg_scale] * len(timesteps) | |
| else: | |
| stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))] | |
| if not isinstance(rescaling_scale, List): | |
| rescaling_scale = [rescaling_scale] * len(timesteps) | |
| else: | |
| rescaling_scale = [ | |
| rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps)) | |
| ] | |
| do_classifier_free_guidance = any(x > 1.0 for x in guidance_scale) | |
| do_spatio_temporal_guidance = any(x > 0.0 for x in stg_scale) | |
| do_rescaling = any(x != 1.0 for x in rescaling_scale) | |
| num_conds = 1 | |
| if do_classifier_free_guidance: | |
| num_conds += 1 | |
| if do_spatio_temporal_guidance: | |
| num_conds += 1 | |
| # Normalize skip_block_list to always be None or a list of lists matching timesteps | |
| if skip_block_list is not None: | |
| # Convert single list to list of lists if needed | |
| if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list): | |
| skip_block_list = [skip_block_list] * len(timesteps) | |
| else: | |
| new_skip_block_list = [] | |
| for i, timestep in enumerate(timesteps): | |
| new_skip_block_list.append(skip_block_list[guidance_mapping[i]]) | |
| skip_block_list = new_skip_block_list | |
| # Prepare skip layer masks | |
| skip_layer_masks: Optional[List[torch.Tensor]] = None | |
| if do_spatio_temporal_guidance: | |
| if skip_block_list is not None: | |
| skip_layer_masks = [ | |
| self.transformer.create_skip_layer_mask( | |
| batch_size, num_conds, num_conds - 1, skip_blocks | |
| ) | |
| for skip_blocks in skip_block_list | |
| ] | |
| if enhance_prompt: | |
| self.prompt_enhancer_image_caption_model = ( | |
| self.prompt_enhancer_image_caption_model.to(self._execution_device) | |
| ) | |
| self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to( | |
| self._execution_device | |
| ) | |
| prompt = generate_cinematic_prompt( | |
| self.prompt_enhancer_image_caption_model, | |
| self.prompt_enhancer_image_caption_processor, | |
| self.prompt_enhancer_llm_model, | |
| self.prompt_enhancer_llm_tokenizer, | |
| prompt, | |
| conditioning_items, | |
| max_new_tokens=text_encoder_max_tokens, | |
| ) | |
| # 3. Encode input prompt | |
| if self.text_encoder is not None: | |
| self.text_encoder = self.text_encoder.to(self._execution_device) | |
| ( | |
| prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_embeds, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| text_encoder_max_tokens=text_encoder_max_tokens, | |
| ) | |
| if offload_to_cpu and self.text_encoder is not None: | |
| self.text_encoder = self.text_encoder.cpu() | |
| self.transformer = self.transformer.to(self._execution_device) | |
| prompt_embeds_batch = prompt_embeds | |
| prompt_attention_mask_batch = prompt_attention_mask | |
| if do_classifier_free_guidance: | |
| prompt_embeds_batch = torch.cat( | |
| [negative_prompt_embeds, prompt_embeds], dim=0 | |
| ) | |
| prompt_attention_mask_batch = torch.cat( | |
| [negative_prompt_attention_mask, prompt_attention_mask], dim=0 | |
| ) | |
| if do_spatio_temporal_guidance: | |
| prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0) | |
| prompt_attention_mask_batch = torch.cat( | |
| [ | |
| prompt_attention_mask_batch, | |
| prompt_attention_mask, | |
| ], | |
| dim=0, | |
| ) | |
| # 4. Prepare the initial latents using the provided media and conditioning items | |
| # Prepare the initial latents tensor, shape = (b, c, f, h, w) | |
| latents = self.prepare_latents( | |
| latents=latents, | |
| media_items=media_items, | |
| timestep=timesteps[0], | |
| latent_shape=latent_shape, | |
| dtype=prompt_embeds_batch.dtype, | |
| device=device, | |
| generator=generator, | |
| vae_per_channel_normalize=vae_per_channel_normalize, | |
| ) | |
| # Update the latents with the conditioning items and patchify them into (b, n, c) | |
| latents, pixel_coords, conditioning_mask, num_cond_latents = ( | |
| self.prepare_conditioning( | |
| conditioning_items=conditioning_items, | |
| init_latents=latents, | |
| num_frames=num_frames, | |
| height=height, | |
| width=width, | |
| vae_per_channel_normalize=vae_per_channel_normalize, | |
| generator=generator, | |
| ) | |
| ) | |
| init_latents = latents.clone() # Used for image_cond_noise_update | |
| pixel_coords = torch.cat([pixel_coords] * num_conds) | |
| orig_conditioning_mask = conditioning_mask | |
| if conditioning_mask is not None and is_video: | |
| assert num_images_per_prompt == 1 | |
| conditioning_mask = torch.cat([conditioning_mask] * num_conds) | |
| fractional_coords = pixel_coords.to(torch.float32) | |
| fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0 | |
| ) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if conditioning_mask is not None and image_cond_noise_scale > 0.0: | |
| latents = self.add_noise_to_image_conditioning_latents( | |
| t, | |
| init_latents, | |
| latents, | |
| image_cond_noise_scale, | |
| orig_conditioning_mask, | |
| generator, | |
| ) | |
| latent_model_input = ( | |
| torch.cat([latents] * num_conds) if num_conds > 1 else latents | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t | |
| ) | |
| current_timestep = t | |
| if not torch.is_tensor(current_timestep): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = latent_model_input.device.type == "mps" | |
| if isinstance(current_timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| current_timestep = torch.tensor( | |
| [current_timestep], | |
| dtype=dtype, | |
| device=latent_model_input.device, | |
| ) | |
| elif len(current_timestep.shape) == 0: | |
| current_timestep = current_timestep[None].to( | |
| latent_model_input.device | |
| ) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| current_timestep = current_timestep.expand( | |
| latent_model_input.shape[0] | |
| ).unsqueeze(-1) | |
| if conditioning_mask is not None: | |
| # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask) | |
| # and will start to be denoised when the current timestep is lower than their conditioning timestep. | |
| current_timestep = torch.min( | |
| current_timestep, 1.0 - conditioning_mask | |
| ) | |
| # Choose the appropriate context manager based on `mixed_precision` | |
| if mixed_precision: | |
| context_manager = torch.autocast(device.type, dtype=torch.bfloat16) | |
| else: | |
| context_manager = nullcontext() # Dummy context manager | |
| # predict noise model_output | |
| with context_manager: | |
| noise_pred = self.transformer( | |
| latent_model_input.to(self.transformer.dtype), | |
| indices_grid=fractional_coords, | |
| encoder_hidden_states=prompt_embeds_batch.to( | |
| self.transformer.dtype | |
| ), | |
| encoder_attention_mask=prompt_attention_mask_batch, | |
| timestep=current_timestep, | |
| skip_layer_mask=( | |
| skip_layer_masks[i] | |
| if skip_layer_masks is not None | |
| else None | |
| ), | |
| skip_layer_strategy=skip_layer_strategy, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_spatio_temporal_guidance: | |
| noise_pred_text, noise_pred_text_perturb = noise_pred.chunk( | |
| num_conds | |
| )[-2:] | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2] | |
| if cfg_star_rescale: | |
| # Rescales the unconditional noise prediction using the projection of the conditional prediction onto it: | |
| # α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond | |
| # where ε_text is the conditional noise prediction and ε_uncond is the unconditional one. | |
| positive_flat = noise_pred_text.view(batch_size, -1) | |
| negative_flat = noise_pred_uncond.view(batch_size, -1) | |
| dot_product = torch.sum( | |
| positive_flat * negative_flat, dim=1, keepdim=True | |
| ) | |
| squared_norm = ( | |
| torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8 | |
| ) | |
| alpha = dot_product / squared_norm | |
| noise_pred_uncond = alpha * noise_pred_uncond | |
| noise_pred = noise_pred_uncond + guidance_scale[i] * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| elif do_spatio_temporal_guidance: | |
| noise_pred = noise_pred_text | |
| if do_spatio_temporal_guidance: | |
| noise_pred = noise_pred + stg_scale[i] * ( | |
| noise_pred_text - noise_pred_text_perturb | |
| ) | |
| if do_rescaling and stg_scale[i] > 0.0: | |
| noise_pred_text_std = noise_pred_text.view(batch_size, -1).std( | |
| dim=1, keepdim=True | |
| ) | |
| noise_pred_std = noise_pred.view(batch_size, -1).std( | |
| dim=1, keepdim=True | |
| ) | |
| factor = noise_pred_text_std / noise_pred_std | |
| factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i]) | |
| noise_pred = noise_pred * factor.view(batch_size, 1, 1) | |
| current_timestep = current_timestep[:1] | |
| # learned sigma | |
| if ( | |
| self.transformer.config.out_channels // 2 | |
| == self.transformer.config.in_channels | |
| ): | |
| noise_pred = noise_pred.chunk(2, dim=1)[0] | |
| # compute previous image: x_t -> x_t-1 | |
| latents = self.denoising_step( | |
| latents, | |
| noise_pred, | |
| current_timestep, | |
| orig_conditioning_mask, | |
| t, | |
| extra_step_kwargs, | |
| stochastic_sampling=stochastic_sampling, | |
| ) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ( | |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
| ): | |
| progress_bar.update() | |
| if callback_on_step_end is not None: | |
| callback_on_step_end(self, i, t, {}) | |
| if offload_to_cpu: | |
| self.transformer = self.transformer.cpu() | |
| if self._execution_device == "cuda": | |
| torch.cuda.empty_cache() | |
| # Remove the added conditioning latents | |
| latents = latents[:, num_cond_latents:] | |
| latents = self.patchifier.unpatchify( | |
| latents=latents, | |
| output_height=latent_height, | |
| output_width=latent_width, | |
| out_channels=self.transformer.in_channels | |
| // math.prod(self.patchifier.patch_size), | |
| ) | |
| if output_type != "latent": | |
| if self.vae.decoder.timestep_conditioning: | |
| noise = torch.randn_like(latents) | |
| if not isinstance(decode_timestep, list): | |
| decode_timestep = [decode_timestep] * latents.shape[0] | |
| if decode_noise_scale is None: | |
| decode_noise_scale = decode_timestep | |
| elif not isinstance(decode_noise_scale, list): | |
| decode_noise_scale = [decode_noise_scale] * latents.shape[0] | |
| decode_timestep = torch.tensor(decode_timestep).to(latents.device) | |
| decode_noise_scale = torch.tensor(decode_noise_scale).to( | |
| latents.device | |
| )[:, None, None, None, None] | |
| latents = ( | |
| latents * (1 - decode_noise_scale) + noise * decode_noise_scale | |
| ) | |
| else: | |
| decode_timestep = None | |
| image = vae_decode( | |
| latents, | |
| self.vae, | |
| is_video, | |
| vae_per_channel_normalize=kwargs["vae_per_channel_normalize"], | |
| timestep=decode_timestep, | |
| ) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| else: | |
| image = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |
| def denoising_step( | |
| self, | |
| latents: torch.Tensor, | |
| noise_pred: torch.Tensor, | |
| current_timestep: torch.Tensor, | |
| conditioning_mask: torch.Tensor, | |
| t: float, | |
| extra_step_kwargs, | |
| t_eps=1e-6, | |
| stochastic_sampling=False, | |
| ): | |
| """ | |
| Perform the denoising step for the required tokens, based on the current timestep and | |
| conditioning mask: | |
| Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask) | |
| and will start to be denoised when the current timestep is equal or lower than their | |
| conditioning timestep. | |
| (hard-conditioning latents with conditioning_mask = 1.0 are never denoised) | |
| """ | |
| # Denoise the latents using the scheduler | |
| denoised_latents = self.scheduler.step( | |
| noise_pred, | |
| t if current_timestep is None else current_timestep, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| stochastic_sampling=stochastic_sampling, | |
| )[0] | |
| if conditioning_mask is None: | |
| return denoised_latents | |
| tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1) | |
| return torch.where(tokens_to_denoise_mask, denoised_latents, latents) | |
| def prepare_conditioning( | |
| self, | |
| conditioning_items: Optional[List[ConditioningItem]], | |
| init_latents: torch.Tensor, | |
| num_frames: int, | |
| height: int, | |
| width: int, | |
| vae_per_channel_normalize: bool = False, | |
| generator=None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: | |
| """ | |
| Prepare conditioning tokens based on the provided conditioning items. | |
| This method encodes provided conditioning items (video frames or single frames) into latents | |
| and integrates them with the initial latent tensor. It also calculates corresponding pixel | |
| coordinates, a mask indicating the influence of conditioning latents, and the total number of | |
| conditioning latents. | |
| Args: | |
| conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects. | |
| init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where | |
| `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions. | |
| num_frames, height, width: The dimensions of the generated video. | |
| vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding. | |
| Defaults to `False`. | |
| generator: The random generator | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: | |
| - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents, | |
| patchified into (b, n, c) shape. | |
| - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated | |
| latent tensor. | |
| - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each | |
| latent token. | |
| - `num_cond_latents` (int): The total number of latent tokens added from conditioning items. | |
| Raises: | |
| AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid. | |
| """ | |
| assert isinstance(self.vae, CausalVideoAutoencoder) | |
| if conditioning_items: | |
| batch_size, _, num_latent_frames = init_latents.shape[:3] | |
| init_conditioning_mask = torch.zeros( | |
| init_latents[:, 0, :, :, :].shape, | |
| dtype=torch.float32, | |
| device=init_latents.device, | |
| ) | |
| extra_conditioning_latents = [] | |
| extra_conditioning_pixel_coords = [] | |
| extra_conditioning_mask = [] | |
| extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding) | |
| # Process each conditioning item | |
| for conditioning_item in conditioning_items: | |
| conditioning_item = self._resize_conditioning_item( | |
| conditioning_item, height, width | |
| ) | |
| media_item = conditioning_item.media_item | |
| media_frame_number = conditioning_item.media_frame_number | |
| strength = conditioning_item.conditioning_strength | |
| assert media_item.ndim == 5 # (b, c, f, h, w) | |
| b, c, n_frames, h, w = media_item.shape | |
| assert ( | |
| height == h and width == w | |
| ) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0" | |
| assert n_frames % 8 == 1 | |
| assert ( | |
| media_frame_number >= 0 | |
| and media_frame_number + n_frames <= num_frames | |
| ) | |
| # Encode the provided conditioning media item | |
| media_item_latents = vae_encode( | |
| media_item.to(dtype=self.vae.dtype, device=self.vae.device), | |
| self.vae, | |
| vae_per_channel_normalize=vae_per_channel_normalize, | |
| ).to(dtype=init_latents.dtype) | |
| # Handle the different conditioning cases | |
| if media_frame_number == 0: | |
| # Get the target spatial position of the latent conditioning item | |
| media_item_latents, l_x, l_y = self._get_latent_spatial_position( | |
| media_item_latents, | |
| conditioning_item, | |
| height, | |
| width, | |
| strip_latent_border=True, | |
| ) | |
| b, c_l, f_l, h_l, w_l = media_item_latents.shape | |
| # First frame or sequence - just update the initial noise latents and the mask | |
| init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = ( | |
| torch.lerp( | |
| init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l], | |
| media_item_latents, | |
| strength, | |
| ) | |
| ) | |
| init_conditioning_mask[ | |
| :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l | |
| ] = strength | |
| else: | |
| # Non-first frame or sequence | |
| if n_frames > 1: | |
| # Handle non-first sequence. | |
| # Encoded latents are either fully consumed, or the prefix is handled separately below. | |
| ( | |
| init_latents, | |
| init_conditioning_mask, | |
| media_item_latents, | |
| ) = self._handle_non_first_conditioning_sequence( | |
| init_latents, | |
| init_conditioning_mask, | |
| media_item_latents, | |
| media_frame_number, | |
| strength, | |
| ) | |
| # Single frame or sequence-prefix latents | |
| if media_item_latents is not None: | |
| noise = randn_tensor( | |
| media_item_latents.shape, | |
| generator=generator, | |
| device=media_item_latents.device, | |
| dtype=media_item_latents.dtype, | |
| ) | |
| media_item_latents = torch.lerp( | |
| noise, media_item_latents, strength | |
| ) | |
| # Patchify the extra conditioning latents and calculate their pixel coordinates | |
| media_item_latents, latent_coords = self.patchifier.patchify( | |
| latents=media_item_latents | |
| ) | |
| pixel_coords = latent_to_pixel_coords( | |
| latent_coords, | |
| self.vae, | |
| causal_fix=self.transformer.config.causal_temporal_positioning, | |
| ) | |
| # Update the frame numbers to match the target frame number | |
| pixel_coords[:, 0] += media_frame_number | |
| extra_conditioning_num_latents += media_item_latents.shape[1] | |
| conditioning_mask = torch.full( | |
| media_item_latents.shape[:2], | |
| strength, | |
| dtype=torch.float32, | |
| device=init_latents.device, | |
| ) | |
| extra_conditioning_latents.append(media_item_latents) | |
| extra_conditioning_pixel_coords.append(pixel_coords) | |
| extra_conditioning_mask.append(conditioning_mask) | |
| # Patchify the updated latents and calculate their pixel coordinates | |
| init_latents, init_latent_coords = self.patchifier.patchify( | |
| latents=init_latents | |
| ) | |
| init_pixel_coords = latent_to_pixel_coords( | |
| init_latent_coords, | |
| self.vae, | |
| causal_fix=self.transformer.config.causal_temporal_positioning, | |
| ) | |
| if not conditioning_items: | |
| return init_latents, init_pixel_coords, None, 0 | |
| init_conditioning_mask, _ = self.patchifier.patchify( | |
| latents=init_conditioning_mask.unsqueeze(1) | |
| ) | |
| init_conditioning_mask = init_conditioning_mask.squeeze(-1) | |
| if extra_conditioning_latents: | |
| # Stack the extra conditioning latents, pixel coordinates and mask | |
| init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1) | |
| init_pixel_coords = torch.cat( | |
| [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2 | |
| ) | |
| init_conditioning_mask = torch.cat( | |
| [*extra_conditioning_mask, init_conditioning_mask], dim=1 | |
| ) | |
| if self.transformer.use_tpu_flash_attention: | |
| # When flash attention is used, keep the original number of tokens by removing | |
| # tokens from the end. | |
| init_latents = init_latents[:, :-extra_conditioning_num_latents] | |
| init_pixel_coords = init_pixel_coords[ | |
| :, :, :-extra_conditioning_num_latents | |
| ] | |
| init_conditioning_mask = init_conditioning_mask[ | |
| :, :-extra_conditioning_num_latents | |
| ] | |
| return ( | |
| init_latents, | |
| init_pixel_coords, | |
| init_conditioning_mask, | |
| extra_conditioning_num_latents, | |
| ) | |
| def _resize_conditioning_item( | |
| conditioning_item: ConditioningItem, | |
| height: int, | |
| width: int, | |
| ): | |
| if conditioning_item.media_x or conditioning_item.media_y: | |
| raise ValueError( | |
| "Provide media_item in the target size for spatial conditioning." | |
| ) | |
| new_conditioning_item = copy.copy(conditioning_item) | |
| new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor( | |
| conditioning_item.media_item, height, width | |
| ) | |
| return new_conditioning_item | |
| def _get_latent_spatial_position( | |
| self, | |
| latents: torch.Tensor, | |
| conditioning_item: ConditioningItem, | |
| height: int, | |
| width: int, | |
| strip_latent_border, | |
| ): | |
| """ | |
| Get the spatial position of the conditioning item in the latent space. | |
| If requested, strip the conditioning latent borders that do not align with target borders. | |
| (border latents look different then other latents and might confuse the model) | |
| """ | |
| scale = self.vae_scale_factor | |
| h, w = conditioning_item.media_item.shape[-2:] | |
| assert ( | |
| h <= height and w <= width | |
| ), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}" | |
| assert h % scale == 0 and w % scale == 0 | |
| # Compute the start and end spatial positions of the media item | |
| x_start, y_start = conditioning_item.media_x, conditioning_item.media_y | |
| x_start = (width - w) // 2 if x_start is None else x_start | |
| y_start = (height - h) // 2 if y_start is None else y_start | |
| x_end, y_end = x_start + w, y_start + h | |
| assert ( | |
| x_end <= width and y_end <= height | |
| ), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}" | |
| if strip_latent_border: | |
| # Strip one latent from left/right and/or top/bottom, update x, y accordingly | |
| if x_start > 0: | |
| x_start += scale | |
| latents = latents[:, :, :, :, 1:] | |
| if y_start > 0: | |
| y_start += scale | |
| latents = latents[:, :, :, 1:, :] | |
| if x_end < width: | |
| latents = latents[:, :, :, :, :-1] | |
| if y_end < height: | |
| latents = latents[:, :, :, :-1, :] | |
| return latents, x_start // scale, y_start // scale | |
| def _handle_non_first_conditioning_sequence( | |
| init_latents: torch.Tensor, | |
| init_conditioning_mask: torch.Tensor, | |
| latents: torch.Tensor, | |
| media_frame_number: int, | |
| strength: float, | |
| num_prefix_latent_frames: int = 2, | |
| prefix_latents_mode: str = "concat", | |
| prefix_soft_conditioning_strength: float = 0.15, | |
| ): | |
| """ | |
| Special handling for a conditioning sequence that does not start on the first frame. | |
| The special handling is required to allow a short encoded video to be used as middle | |
| (or last) sequence in a longer video. | |
| Args: | |
| init_latents (torch.Tensor): The initial noise latents to be updated. | |
| init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated. | |
| latents (torch.Tensor): The encoded conditioning item. | |
| media_frame_number (int): The target frame number of the first frame in the conditioning sequence. | |
| strength (float): The conditioning strength for the conditioning latents. | |
| num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled | |
| separately. Defaults to 2. | |
| prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents. | |
| - "drop": Drop the prefix latents. | |
| - "soft": Use the prefix latents, but with soft-conditioning | |
| - "concat": Add the prefix latents as extra tokens (like single frames) | |
| prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for | |
| the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1. | |
| """ | |
| f_l = latents.shape[2] | |
| f_l_p = num_prefix_latent_frames | |
| assert f_l >= f_l_p | |
| assert media_frame_number % 8 == 0 | |
| if f_l > f_l_p: | |
| # Insert the conditioning latents **excluding the prefix** into the sequence | |
| f_l_start = media_frame_number // 8 + f_l_p | |
| f_l_end = f_l_start + f_l - f_l_p | |
| init_latents[:, :, f_l_start:f_l_end] = torch.lerp( | |
| init_latents[:, :, f_l_start:f_l_end], | |
| latents[:, :, f_l_p:], | |
| strength, | |
| ) | |
| # Mark these latent frames as conditioning latents | |
| init_conditioning_mask[:, f_l_start:f_l_end] = strength | |
| # Handle the prefix-latents | |
| if prefix_latents_mode == "soft": | |
| if f_l_p > 1: | |
| # Drop the first (single-frame) latent and soft-condition the remaining prefix | |
| f_l_start = media_frame_number // 8 + 1 | |
| f_l_end = f_l_start + f_l_p - 1 | |
| strength = min(prefix_soft_conditioning_strength, strength) | |
| init_latents[:, :, f_l_start:f_l_end] = torch.lerp( | |
| init_latents[:, :, f_l_start:f_l_end], | |
| latents[:, :, 1:f_l_p], | |
| strength, | |
| ) | |
| # Mark these latent frames as conditioning latents | |
| init_conditioning_mask[:, f_l_start:f_l_end] = strength | |
| latents = None # No more latents to handle | |
| elif prefix_latents_mode == "drop": | |
| # Drop the prefix latents | |
| latents = None | |
| elif prefix_latents_mode == "concat": | |
| # Pass-on the prefix latents to be handled as extra conditioning frames | |
| latents = latents[:, :, :f_l_p] | |
| else: | |
| raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}") | |
| return ( | |
| init_latents, | |
| init_conditioning_mask, | |
| latents, | |
| ) | |
| def trim_conditioning_sequence( | |
| self, start_frame: int, sequence_num_frames: int, target_num_frames: int | |
| ): | |
| """ | |
| Trim a conditioning sequence to the allowed number of frames. | |
| Args: | |
| start_frame (int): The target frame number of the first frame in the sequence. | |
| sequence_num_frames (int): The number of frames in the sequence. | |
| target_num_frames (int): The target number of frames in the generated video. | |
| Returns: | |
| int: updated sequence length | |
| """ | |
| scale_factor = self.video_scale_factor | |
| num_frames = min(sequence_num_frames, target_num_frames - start_frame) | |
| # Trim down to a multiple of temporal_scale_factor frames plus 1 | |
| num_frames = (num_frames - 1) // scale_factor * scale_factor + 1 | |
| return num_frames | |
| def adain_filter_latent( | |
| latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0 | |
| ): | |
| """ | |
| Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on | |
| statistics from a reference latent tensor. | |
| Args: | |
| latent (torch.Tensor): Input latents to normalize | |
| reference_latent (torch.Tensor): The reference latents providing style statistics. | |
| factor (float): Blending factor between original and transformed latent. | |
| Range: -10.0 to 10.0, Default: 1.0 | |
| Returns: | |
| torch.Tensor: The transformed latent tensor | |
| """ | |
| result = latents.clone() | |
| for i in range(latents.size(0)): | |
| for c in range(latents.size(1)): | |
| r_sd, r_mean = torch.std_mean( | |
| reference_latents[i, c], dim=None | |
| ) # index by original dim order | |
| i_sd, i_mean = torch.std_mean(result[i, c], dim=None) | |
| result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean | |
| result = torch.lerp(latents, result, factor) | |
| return result | |
| class LTXMultiScalePipeline: | |
| def _upsample_latents( | |
| self, latest_upsampler: LatentUpsampler, latents: torch.Tensor | |
| ): | |
| assert latents.device == latest_upsampler.device | |
| latents = un_normalize_latents( | |
| latents, self.vae, vae_per_channel_normalize=True | |
| ) | |
| upsampled_latents = latest_upsampler(latents) | |
| upsampled_latents = normalize_latents( | |
| upsampled_latents, self.vae, vae_per_channel_normalize=True | |
| ) | |
| return upsampled_latents | |
| def __init__( | |
| self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler | |
| ): | |
| self.video_pipeline = video_pipeline | |
| self.vae = video_pipeline.vae | |
| self.latent_upsampler = latent_upsampler | |
| def __call__( | |
| self, | |
| downscale_factor: float, | |
| first_pass: dict, | |
| second_pass: dict, | |
| *args: Any, | |
| **kwargs: Any, | |
| ) -> Any: | |
| original_kwargs = kwargs.copy() | |
| original_output_type = kwargs["output_type"] | |
| original_width = kwargs["width"] | |
| original_height = kwargs["height"] | |
| x_width = int(kwargs["width"] * downscale_factor) | |
| downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor) | |
| x_height = int(kwargs["height"] * downscale_factor) | |
| downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor) | |
| kwargs["output_type"] = "latent" | |
| kwargs["width"] = downscaled_width | |
| kwargs["height"] = downscaled_height | |
| kwargs.update(**first_pass) | |
| result = self.video_pipeline(*args, **kwargs) | |
| latents = result.images | |
| upsampled_latents = self._upsample_latents(self.latent_upsampler, latents) | |
| upsampled_latents = adain_filter_latent( | |
| latents=upsampled_latents, reference_latents=latents | |
| ) | |
| kwargs = original_kwargs | |
| kwargs["latents"] = upsampled_latents | |
| kwargs["output_type"] = original_output_type | |
| kwargs["width"] = downscaled_width * 2 | |
| kwargs["height"] = downscaled_height * 2 | |
| kwargs.update(**second_pass) | |
| result = self.video_pipeline(*args, **kwargs) | |
| if original_output_type != "latent": | |
| num_frames = result.images.shape[2] | |
| videos = rearrange(result.images, "b c f h w -> (b f) c h w") | |
| videos = F.interpolate( | |
| videos, | |
| size=(original_height, original_width), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames) | |
| result.images = videos | |
| return result | |