Upload 2 files
Browse files- app.py +724 -0
- requirements.txt +35 -0
app.py
ADDED
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import streamlit as st
|
4 |
+
import pdfplumber
|
5 |
+
import arxiv
|
6 |
+
import google.generativeai as genai
|
7 |
+
import numpy as np
|
8 |
+
from pinecone import Pinecone
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
11 |
+
from langchain_groq import ChatGroq
|
12 |
+
from langchain.schema import Document
|
13 |
+
from langchain_pinecone import PineconeVectorStore
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.chains import create_retrieval_chain
|
16 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
17 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
from typing import List, Dict
|
20 |
+
import requests
|
21 |
+
from io import BytesIO
|
22 |
+
|
23 |
+
# Load environment variables
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
# Initialize services
|
27 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
|
28 |
+
search_tool = DuckDuckGoSearchRun()
|
29 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
30 |
+
|
31 |
+
# Constants for Index names and models
|
32 |
+
INDEX_NAMES = {
|
33 |
+
"openai": "rag",
|
34 |
+
"groq": "gemini-rag",
|
35 |
+
"research": "research-rag"
|
36 |
+
}
|
37 |
+
|
38 |
+
GROQ_MODELS = [
|
39 |
+
"gemma2-9b-it", "llama-3.3-70b-versatile", "llama-3.1-8b-instant",
|
40 |
+
"mixtral-8x7b-32768", "deepseek-r1-distill-llama-70b"
|
41 |
+
]
|
42 |
+
|
43 |
+
# Previous GeminiEmbeddings class remains the same
|
44 |
+
|
45 |
+
# Document processing class with improved error handling
|
46 |
+
class GeminiEmbeddings:
|
47 |
+
def __init__(self):
|
48 |
+
self.model_name = "models/embedding-001"
|
49 |
+
self._dimension = 768 # Gemini embedding dimension
|
50 |
+
|
51 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
52 |
+
"""Create embeddings for a list of documents."""
|
53 |
+
try:
|
54 |
+
return [self._embed_text(text) for text in texts]
|
55 |
+
except Exception as e:
|
56 |
+
st.error(f"Embedding error: {str(e)}")
|
57 |
+
return []
|
58 |
+
|
59 |
+
def embed_query(self, text: str) -> List[float]:
|
60 |
+
"""Create embeddings for a query string."""
|
61 |
+
return self._embed_text(text)
|
62 |
+
|
63 |
+
def _embed_text(self, text: str) -> List[float]:
|
64 |
+
"""Helper function to embed a single text."""
|
65 |
+
try:
|
66 |
+
response = genai.embed_content(
|
67 |
+
model=self.model_name,
|
68 |
+
content=text,
|
69 |
+
task_type="retrieval_document"
|
70 |
+
)
|
71 |
+
embedding = response["embedding"]
|
72 |
+
return np.array(embedding, dtype=np.float32).tolist()
|
73 |
+
except Exception as e:
|
74 |
+
st.error(f"Embedding generation error: {str(e)}")
|
75 |
+
return [0.0] * self._dimension
|
76 |
+
|
77 |
+
class ResearchEngine:
|
78 |
+
@staticmethod
|
79 |
+
def _download_and_process_pdf(pdf_url: str, metadata: dict = None) -> List[Document]:
|
80 |
+
"""Download and process a PDF from a URL."""
|
81 |
+
try:
|
82 |
+
response = requests.get(pdf_url, timeout=30)
|
83 |
+
if response.status_code == 200:
|
84 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
85 |
+
tmp.write(response.content)
|
86 |
+
docs = DocumentProcessor.process_pdf(tmp.name)
|
87 |
+
# Add metadata to each document chunk
|
88 |
+
if metadata:
|
89 |
+
for doc in docs:
|
90 |
+
doc.metadata.update(metadata)
|
91 |
+
os.unlink(tmp.name)
|
92 |
+
return docs
|
93 |
+
return []
|
94 |
+
except Exception as e:
|
95 |
+
st.warning(f"Error processing PDF from {pdf_url}: {str(e)}")
|
96 |
+
return []
|
97 |
+
|
98 |
+
@staticmethod
|
99 |
+
def fetch_and_process_arxiv_papers(query: str) -> List[Document]:
|
100 |
+
"""Fetch and process papers from arXiv."""
|
101 |
+
try:
|
102 |
+
client = arxiv.Client()
|
103 |
+
search = arxiv.Search(
|
104 |
+
query=query,
|
105 |
+
max_results=2,
|
106 |
+
sort_by=arxiv.SortCriterion.Relevance
|
107 |
+
)
|
108 |
+
documents = []
|
109 |
+
|
110 |
+
for result in client.results(search):
|
111 |
+
try:
|
112 |
+
metadata = {
|
113 |
+
"title": result.title,
|
114 |
+
"authors": ", ".join(a.name for a in result.authors),
|
115 |
+
"published": result.published.strftime('%Y-%m-%d'),
|
116 |
+
"url": result.pdf_url,
|
117 |
+
"source": "arXiv",
|
118 |
+
"abstract": result.summary
|
119 |
+
}
|
120 |
+
docs = ResearchEngine._download_and_process_pdf(result.pdf_url, metadata)
|
121 |
+
documents.extend(docs)
|
122 |
+
except Exception as e:
|
123 |
+
st.warning(f"Error processing paper {result.title}: {str(e)}")
|
124 |
+
continue
|
125 |
+
|
126 |
+
return documents
|
127 |
+
except Exception as e:
|
128 |
+
st.error(f"arXiv error: {str(e)}")
|
129 |
+
return []
|
130 |
+
|
131 |
+
@staticmethod
|
132 |
+
def process_pdf_links(pdf_links: List[str], titles: List[str] = None) -> List[Document]:
|
133 |
+
"""Process a list of PDF links directly."""
|
134 |
+
documents = []
|
135 |
+
for i, pdf_url in enumerate(pdf_links):
|
136 |
+
try:
|
137 |
+
metadata = {
|
138 |
+
"title": titles[i] if titles and i < len(titles) else f"Paper {i+1}",
|
139 |
+
"url": pdf_url,
|
140 |
+
"source": "Custom PDF",
|
141 |
+
}
|
142 |
+
docs = ResearchEngine._download_and_process_pdf(pdf_url, metadata)
|
143 |
+
documents.extend(docs)
|
144 |
+
except Exception as e:
|
145 |
+
st.warning(f"Error processing PDF from {pdf_url}: {str(e)}")
|
146 |
+
continue
|
147 |
+
return documents
|
148 |
+
|
149 |
+
# Add this to AIChains class
|
150 |
+
@staticmethod
|
151 |
+
def research_chain(question: str, model_name: str, mode: str = "arxiv", pdf_links: List[str] = None, titles: List[str] = None) -> str:
|
152 |
+
"""Enhanced research chain with multiple modes."""
|
153 |
+
try:
|
154 |
+
# Get documents based on mode
|
155 |
+
if mode == "arxiv":
|
156 |
+
docs = ResearchEngine.fetch_and_process_arxiv_papers(question)
|
157 |
+
elif mode == "custom_pdfs" and pdf_links:
|
158 |
+
docs = ResearchEngine.process_pdf_links(pdf_links, titles)
|
159 |
+
else:
|
160 |
+
return "Invalid research mode or missing PDF links"
|
161 |
+
|
162 |
+
if not docs:
|
163 |
+
return "No relevant documents found or could not process PDFs."
|
164 |
+
|
165 |
+
# Create embeddings and vectorstore
|
166 |
+
embeddings = GeminiEmbeddings()
|
167 |
+
vectorstore = VectorStoreManager.get_vectorstore(docs, embeddings, INDEX_NAMES["research"])
|
168 |
+
if not vectorstore:
|
169 |
+
return "Error: Could not process documents"
|
170 |
+
|
171 |
+
# Create retrieval chain
|
172 |
+
llm = ChatGroq(model_name=model_name)
|
173 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
174 |
+
|
175 |
+
prompt = ChatPromptTemplate.from_template("""
|
176 |
+
Based on the following research documents:
|
177 |
+
{context}
|
178 |
+
|
179 |
+
Question: {input}
|
180 |
+
|
181 |
+
Provide a comprehensive analysis with specific citations to the source papers.
|
182 |
+
For each point, mention which paper it comes from using the title or number.
|
183 |
+
Include relevant quotes where appropriate.
|
184 |
+
|
185 |
+
Structure your response as follows:
|
186 |
+
1. Main findings
|
187 |
+
2. Supporting evidence
|
188 |
+
3. Relevant quotes
|
189 |
+
4. Sources used
|
190 |
+
""")
|
191 |
+
|
192 |
+
chain = create_retrieval_chain(
|
193 |
+
retriever,
|
194 |
+
create_stuff_documents_chain(llm, prompt)
|
195 |
+
)
|
196 |
+
result = chain.invoke({"input": question})
|
197 |
+
return result["answer"]
|
198 |
+
except Exception as e:
|
199 |
+
return f"Research Error: {str(e)}"
|
200 |
+
class DocumentProcessor:
|
201 |
+
@staticmethod
|
202 |
+
def process_pdf(pdf_path: str) -> List[Document]:
|
203 |
+
"""Process a PDF file and return a list of Document objects."""
|
204 |
+
if not pdf_path:
|
205 |
+
return []
|
206 |
+
try:
|
207 |
+
with pdfplumber.open(pdf_path) as pdf:
|
208 |
+
docs = []
|
209 |
+
for i, page in enumerate(pdf.pages):
|
210 |
+
text = page.extract_text() or ""
|
211 |
+
if text.strip():
|
212 |
+
docs.append(Document(
|
213 |
+
page_content=text.strip(),
|
214 |
+
metadata={
|
215 |
+
"page": i + 1,
|
216 |
+
"source": pdf_path,
|
217 |
+
"type": "pdf"
|
218 |
+
}
|
219 |
+
))
|
220 |
+
|
221 |
+
# Split documents into chunks
|
222 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
223 |
+
chunk_size=1000,
|
224 |
+
chunk_overlap=200,
|
225 |
+
length_function=len
|
226 |
+
)
|
227 |
+
return text_splitter.split_documents(docs)
|
228 |
+
except Exception as e:
|
229 |
+
st.error(f"PDF processing error: {str(e)}")
|
230 |
+
return []
|
231 |
+
|
232 |
+
class VectorStoreManager:
|
233 |
+
@staticmethod
|
234 |
+
def get_vectorstore(docs: List[Document], embeddings, index_name: str) -> PineconeVectorStore:
|
235 |
+
"""Create or get a vector store for the given documents."""
|
236 |
+
try:
|
237 |
+
# Ensure index exists
|
238 |
+
if index_name not in pc.list_indexes().names():
|
239 |
+
pc.create_index(
|
240 |
+
name=index_name,
|
241 |
+
dimension=768, # Gemini embedding dimension
|
242 |
+
metric="cosine"
|
243 |
+
)
|
244 |
+
|
245 |
+
return PineconeVectorStore.from_documents(
|
246 |
+
documents=docs,
|
247 |
+
embedding=embeddings,
|
248 |
+
index_name=index_name
|
249 |
+
)
|
250 |
+
except Exception as e:
|
251 |
+
st.error(f"Error creating vector store: {str(e)}")
|
252 |
+
return None
|
253 |
+
|
254 |
+
@staticmethod
|
255 |
+
def clear_index(index_name: str):
|
256 |
+
"""Clear all vectors from the specified index."""
|
257 |
+
try:
|
258 |
+
if index_name in pc.list_indexes().names():
|
259 |
+
index = pc.Index(index_name)
|
260 |
+
index.delete(delete_all=True)
|
261 |
+
st.success(f"Successfully cleared {index_name} index")
|
262 |
+
else:
|
263 |
+
st.warning(f"Index {index_name} does not exist")
|
264 |
+
except Exception as e:
|
265 |
+
st.error(f"Error clearing index: {str(e)}")
|
266 |
+
|
267 |
+
# AI Chains class with all necessary methods
|
268 |
+
class AIChains:
|
269 |
+
@staticmethod
|
270 |
+
def openai_chain(question: str, context: str = "", pdf_path: str = None) -> str:
|
271 |
+
try:
|
272 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
|
273 |
+
embeddings = OpenAIEmbeddings()
|
274 |
+
|
275 |
+
if pdf_path:
|
276 |
+
docs = DocumentProcessor.process_pdf(pdf_path)
|
277 |
+
vectorstore = VectorStoreManager.get_vectorstore(docs, embeddings, INDEX_NAMES["openai"])
|
278 |
+
if not vectorstore:
|
279 |
+
return "Error: Could not process document"
|
280 |
+
|
281 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
282 |
+
prompt = ChatPromptTemplate.from_template("""
|
283 |
+
Context: {context}
|
284 |
+
Additional Info: {additional_context}
|
285 |
+
Question: {input}
|
286 |
+
Provide a detailed answer with citations:
|
287 |
+
""")
|
288 |
+
|
289 |
+
chain = create_retrieval_chain(
|
290 |
+
retriever,
|
291 |
+
create_stuff_documents_chain(llm, prompt)
|
292 |
+
)
|
293 |
+
result = chain.invoke({
|
294 |
+
"input": question,
|
295 |
+
"additional_context": context
|
296 |
+
})
|
297 |
+
return result["answer"]
|
298 |
+
|
299 |
+
return llm.invoke(f"{context}\nQuestion: {question}").content
|
300 |
+
except Exception as e:
|
301 |
+
return f"OpenAI Error: {str(e)}"
|
302 |
+
|
303 |
+
@staticmethod
|
304 |
+
def groq_chain(question: str, model_name: str, context: str = "", pdf_path: str = None) -> str:
|
305 |
+
try:
|
306 |
+
llm = ChatGroq(model_name=model_name)
|
307 |
+
embeddings = GeminiEmbeddings()
|
308 |
+
|
309 |
+
if pdf_path:
|
310 |
+
docs = DocumentProcessor.process_pdf(pdf_path)
|
311 |
+
vectorstore = VectorStoreManager.get_vectorstore(docs, embeddings, INDEX_NAMES["groq"])
|
312 |
+
if not vectorstore:
|
313 |
+
return "Error: Could not process document"
|
314 |
+
|
315 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
316 |
+
prompt = ChatPromptTemplate.from_template("""
|
317 |
+
Context: {context}
|
318 |
+
Additional Info: {additional_context}
|
319 |
+
Question: {input}
|
320 |
+
Provide a detailed answer with citations:
|
321 |
+
""")
|
322 |
+
|
323 |
+
chain = create_retrieval_chain(
|
324 |
+
retriever,
|
325 |
+
create_stuff_documents_chain(llm, prompt)
|
326 |
+
)
|
327 |
+
result = chain.invoke({
|
328 |
+
"input": question,
|
329 |
+
"additional_context": context
|
330 |
+
})
|
331 |
+
return result["answer"]
|
332 |
+
|
333 |
+
return llm.invoke(f"{context}\nQuestion: {question}").content
|
334 |
+
except Exception as e:
|
335 |
+
return f"Groq Error: {str(e)}"
|
336 |
+
|
337 |
+
@staticmethod
|
338 |
+
def research_chain(question: str, model_name: str, mode: str = "arxiv", pdf_links: List[str] = None, titles: List[str] = None) -> str:
|
339 |
+
try:
|
340 |
+
if mode == "arxiv":
|
341 |
+
docs = ResearchEngine.fetch_and_process_arxiv_papers(question)
|
342 |
+
elif mode == "custom_pdfs" and pdf_links:
|
343 |
+
docs = ResearchEngine.process_pdf_links(pdf_links, titles)
|
344 |
+
else:
|
345 |
+
return "Invalid research mode or missing PDF links"
|
346 |
+
|
347 |
+
if not docs:
|
348 |
+
return "No relevant documents found."
|
349 |
+
|
350 |
+
embeddings = GeminiEmbeddings()
|
351 |
+
vectorstore = VectorStoreManager.get_vectorstore(
|
352 |
+
docs,
|
353 |
+
embeddings,
|
354 |
+
INDEX_NAMES["research"]
|
355 |
+
)
|
356 |
+
if not vectorstore:
|
357 |
+
return "Error: Could not process research papers"
|
358 |
+
|
359 |
+
llm = ChatGroq(model_name=model_name)
|
360 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
361 |
+
|
362 |
+
prompt = ChatPromptTemplate.from_template("""
|
363 |
+
Based on the following research papers:
|
364 |
+
{context}
|
365 |
+
|
366 |
+
Question: {input}
|
367 |
+
|
368 |
+
Provide a detailed analysis with specific citations:
|
369 |
+
""")
|
370 |
+
|
371 |
+
chain = create_retrieval_chain(
|
372 |
+
retriever,
|
373 |
+
create_stuff_documents_chain(llm, prompt)
|
374 |
+
)
|
375 |
+
result = chain.invoke({"input": question})
|
376 |
+
return result["answer"]
|
377 |
+
except Exception as e:
|
378 |
+
return f"Research Error: {str(e)}"
|
379 |
+
|
380 |
+
# Enhanced Streamlit UI
|
381 |
+
st.set_page_config(
|
382 |
+
page_title="AI Research Assistant",
|
383 |
+
page_icon="π¬",
|
384 |
+
layout="wide",
|
385 |
+
initial_sidebar_state="expanded"
|
386 |
+
)
|
387 |
+
|
388 |
+
# Updated styling with more modern look
|
389 |
+
st.markdown("""
|
390 |
+
<style>
|
391 |
+
/* Base styles */
|
392 |
+
:root {
|
393 |
+
--primary-color: #7c3aed;
|
394 |
+
--secondary-color: #4f46e5;
|
395 |
+
--background-color: #f9fafb;
|
396 |
+
--text-color: #111827;
|
397 |
+
}
|
398 |
+
|
399 |
+
/* Main container */
|
400 |
+
.main {
|
401 |
+
background-color: var(--background-color);
|
402 |
+
color: var(--text-color);
|
403 |
+
font-family: 'Inter', sans-serif;
|
404 |
+
}
|
405 |
+
|
406 |
+
/* Chat messages */
|
407 |
+
.stChatMessage {
|
408 |
+
background-color: white;
|
409 |
+
border-radius: 1rem;
|
410 |
+
padding: 1rem;
|
411 |
+
margin: 1rem 0;
|
412 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
413 |
+
animation: slideIn 0.3s ease-out;
|
414 |
+
}
|
415 |
+
|
416 |
+
/* User message specific */
|
417 |
+
.user-message {
|
418 |
+
background-color: #f3f4f6;
|
419 |
+
margin-left: auto;
|
420 |
+
max-width: 80%;
|
421 |
+
}
|
422 |
+
|
423 |
+
/* Assistant message specific */
|
424 |
+
.assistant-message {
|
425 |
+
background-color: white;
|
426 |
+
margin-right: auto;
|
427 |
+
max-width: 80%;
|
428 |
+
}
|
429 |
+
|
430 |
+
/* Input container */
|
431 |
+
.input-container {
|
432 |
+
position: fixed;
|
433 |
+
bottom: 0;
|
434 |
+
left: 0;
|
435 |
+
right: 0;
|
436 |
+
background-color: white;
|
437 |
+
padding: 1rem;
|
438 |
+
box-shadow: 0 -2px 10px rgba(0,0,0,0.1);
|
439 |
+
z-index: 1000;
|
440 |
+
}
|
441 |
+
|
442 |
+
/* Buttons */
|
443 |
+
.stButton button {
|
444 |
+
background: linear-gradient(to right, var(--primary-color), var(--secondary-color));
|
445 |
+
color: white;
|
446 |
+
border: none;
|
447 |
+
border-radius: 0.5rem;
|
448 |
+
padding: 0.5rem 1rem;
|
449 |
+
transition: all 0.3s ease;
|
450 |
+
}
|
451 |
+
|
452 |
+
.stButton button:hover {
|
453 |
+
transform: translateY(-1px);
|
454 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
455 |
+
}
|
456 |
+
|
457 |
+
/* Sidebar */
|
458 |
+
.css-1d391kg {
|
459 |
+
background-color: white;
|
460 |
+
}
|
461 |
+
|
462 |
+
/* Animations */
|
463 |
+
@keyframes slideIn {
|
464 |
+
from {
|
465 |
+
transform: translateY(20px);
|
466 |
+
opacity: 0;
|
467 |
+
}
|
468 |
+
to {
|
469 |
+
transform: translateY(0);
|
470 |
+
opacity: 1;
|
471 |
+
}
|
472 |
+
}
|
473 |
+
|
474 |
+
/* Chat container */
|
475 |
+
.chat-container {
|
476 |
+
margin-bottom: 120px;
|
477 |
+
padding: 1rem;
|
478 |
+
}
|
479 |
+
|
480 |
+
/* Search container */
|
481 |
+
.search-container {
|
482 |
+
position: fixed;
|
483 |
+
bottom: 0;
|
484 |
+
left: 0;
|
485 |
+
right: 0;
|
486 |
+
background: white;
|
487 |
+
padding: 1rem;
|
488 |
+
box-shadow: 0 -2px 10px rgba(0,0,0,0.1);
|
489 |
+
z-index: 1000;
|
490 |
+
}
|
491 |
+
|
492 |
+
/* Input field */
|
493 |
+
.stTextInput input {
|
494 |
+
border-radius: 0.5rem;
|
495 |
+
border: 2px solid #e5e7eb;
|
496 |
+
padding: 0.75rem;
|
497 |
+
font-size: 1rem;
|
498 |
+
transition: all 0.3s ease;
|
499 |
+
}
|
500 |
+
|
501 |
+
.stTextInput input:focus {
|
502 |
+
border-color: var(--primary-color);
|
503 |
+
box-shadow: 0 0 0 2px rgba(124,58,237,0.2);
|
504 |
+
}
|
505 |
+
|
506 |
+
/* Helper buttons */
|
507 |
+
.helper-buttons {
|
508 |
+
display: flex;
|
509 |
+
gap: 0.5rem;
|
510 |
+
margin-top: 0.5rem;
|
511 |
+
}
|
512 |
+
|
513 |
+
.helper-button {
|
514 |
+
background-color: #f3f4f6;
|
515 |
+
border: none;
|
516 |
+
border-radius: 0.5rem;
|
517 |
+
padding: 0.5rem 1rem;
|
518 |
+
font-size: 0.875rem;
|
519 |
+
color: #4b5563;
|
520 |
+
cursor: pointer;
|
521 |
+
transition: all 0.2s ease;
|
522 |
+
}
|
523 |
+
|
524 |
+
.helper-button:hover {
|
525 |
+
background-color: #e5e7eb;
|
526 |
+
}
|
527 |
+
</style>
|
528 |
+
""", unsafe_allow_html=True)
|
529 |
+
|
530 |
+
# Initialize session state
|
531 |
+
if "messages" not in st.session_state:
|
532 |
+
st.session_state.messages = []
|
533 |
+
if "pdf_path" not in st.session_state:
|
534 |
+
st.session_state.pdf_path = None
|
535 |
+
|
536 |
+
# Enhanced sidebar
|
537 |
+
with st.sidebar:
|
538 |
+
st.title("π€ AI Research Assistant")
|
539 |
+
|
540 |
+
# Chat controls
|
541 |
+
st.subheader("π¬ Chat Controls")
|
542 |
+
col1, col2 = st.columns(2)
|
543 |
+
with col1:
|
544 |
+
if st.button("π New Chat"):
|
545 |
+
st.session_state.messages = []
|
546 |
+
with col2:
|
547 |
+
if st.button("ποΈ Clear History"):
|
548 |
+
st.session_state.messages = []
|
549 |
+
|
550 |
+
st.divider()
|
551 |
+
|
552 |
+
# Model settings
|
553 |
+
st.subheader("π οΈ Model Settings")
|
554 |
+
model_choice = st.selectbox("Select Model", ["OpenAI", "Groq"], key="model_choice")
|
555 |
+
|
556 |
+
if model_choice == "Groq":
|
557 |
+
groq_model = st.selectbox("Model Version", GROQ_MODELS)
|
558 |
+
|
559 |
+
# Database controls
|
560 |
+
st.subheader("π Database Controls")
|
561 |
+
selected_index = st.selectbox("Select Index", list(INDEX_NAMES.values()))
|
562 |
+
if st.button("ποΈ Clear Selected Index"):
|
563 |
+
VectorStoreManager.clear_index(selected_index)
|
564 |
+
|
565 |
+
# Document upload
|
566 |
+
st.subheader("π Document Upload")
|
567 |
+
pdf_file = st.file_uploader("Upload PDF", type="pdf")
|
568 |
+
|
569 |
+
if pdf_file:
|
570 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
|
571 |
+
tmp.write(pdf_file.getvalue())
|
572 |
+
st.session_state.pdf_path = tmp.name
|
573 |
+
st.success("β
PDF uploaded successfully!")
|
574 |
+
|
575 |
+
# Main chat interface
|
576 |
+
st.header("AI Research Assistant", divider="rainbow")
|
577 |
+
|
578 |
+
# Chat container
|
579 |
+
with st.container():
|
580 |
+
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
|
581 |
+
for message in st.session_state.messages:
|
582 |
+
with st.chat_message(message["role"]):
|
583 |
+
st.markdown(message["content"])
|
584 |
+
if "sources" in message and message["sources"]:
|
585 |
+
with st.expander("π View Sources"):
|
586 |
+
st.write(message["sources"])
|
587 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
588 |
+
|
589 |
+
# Search container
|
590 |
+
with st.container():
|
591 |
+
st.markdown('<div class="search-container">', unsafe_allow_html=True)
|
592 |
+
|
593 |
+
# Chat input
|
594 |
+
prompt = st.text_input("Ask me anything...", key="chat_input",
|
595 |
+
placeholder="Type your message here...")
|
596 |
+
|
597 |
+
# Search buttons
|
598 |
+
col1, col2, col3 = st.columns([1, 1, 4])
|
599 |
+
with col1:
|
600 |
+
web_search = st.button("π Web")
|
601 |
+
with col2:
|
602 |
+
research_search = st.button("π Research")
|
603 |
+
|
604 |
+
if prompt and (web_search or research_search or st.session_state.get("chat_input")):
|
605 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
606 |
+
|
607 |
+
with st.chat_message("assistant"):
|
608 |
+
with st.spinner("π€ Thinking..."):
|
609 |
+
try:
|
610 |
+
context = ""
|
611 |
+
sources = {}
|
612 |
+
|
613 |
+
if web_search:
|
614 |
+
with st.spinner("π Searching the web..."):
|
615 |
+
web_results = search_tool.run(prompt)
|
616 |
+
context += f"Web Search Results:\n{web_results}\n"
|
617 |
+
sources["Web"] = web_results
|
618 |
+
|
619 |
+
if research_search:
|
620 |
+
with st.spinner("π Analyzing research papers..."):
|
621 |
+
if model_choice == "Groq":
|
622 |
+
research_response = AIChains.research_chain(prompt, groq_model)
|
623 |
+
sources["Research"] = research_response
|
624 |
+
else:
|
625 |
+
st.warning("βΉοΈ Research mode is only available with Groq models")
|
626 |
+
research_response = ""
|
627 |
+
context += f"\nResearch Context:\n{research_response}\n"
|
628 |
+
|
629 |
+
# Get response from selected model
|
630 |
+
if not (web_search or research_search):
|
631 |
+
with st.spinner("π Generating response..."):
|
632 |
+
if model_choice == "OpenAI":
|
633 |
+
response = AIChains.openai_chain(
|
634 |
+
question=prompt,
|
635 |
+
context=context,
|
636 |
+
pdf_path=st.session_state.pdf_path
|
637 |
+
)
|
638 |
+
else: # Groq
|
639 |
+
response = AIChains.groq_chain(
|
640 |
+
question=prompt,
|
641 |
+
model_name=groq_model,
|
642 |
+
context=context,
|
643 |
+
pdf_path=st.session_state.pdf_path
|
644 |
+
)
|
645 |
+
else:
|
646 |
+
response = context
|
647 |
+
|
648 |
+
# Display response with markdown formatting
|
649 |
+
st.markdown(response)
|
650 |
+
|
651 |
+
# Show sources in expandable section if available
|
652 |
+
if sources:
|
653 |
+
with st.expander("π View Sources"):
|
654 |
+
for source_type, content in sources.items():
|
655 |
+
st.subheader(f"{source_type} Sources")
|
656 |
+
st.markdown(content)
|
657 |
+
|
658 |
+
# Add to chat history
|
659 |
+
st.session_state.messages.append({
|
660 |
+
"role": "assistant",
|
661 |
+
"content": response,
|
662 |
+
"sources": sources if sources else None
|
663 |
+
})
|
664 |
+
except Exception as e:
|
665 |
+
st.error(f"β Error: {str(e)}")
|
666 |
+
|
667 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
668 |
+
st.sidebar.subheader("π Research Mode")
|
669 |
+
research_mode = st.sidebar.radio(
|
670 |
+
"Select Research Mode",
|
671 |
+
["arXiv", "Custom PDFs"]
|
672 |
+
)
|
673 |
+
|
674 |
+
if research_mode == "Custom PDFs":
|
675 |
+
pdf_links = st.sidebar.text_area(
|
676 |
+
"Enter PDF URLs (one per line)",
|
677 |
+
placeholder="https://example.com/paper1.pdf\nhttps://example.com/paper2.pdf"
|
678 |
+
)
|
679 |
+
pdf_titles = st.sidebar.text_area(
|
680 |
+
"Enter Paper Titles (one per line)",
|
681 |
+
placeholder="Paper 1 Title\nPaper 2 Title"
|
682 |
+
)
|
683 |
+
|
684 |
+
pdf_links_list = [url.strip() for url in pdf_links.split('\n') if url.strip()] if pdf_links else []
|
685 |
+
pdf_titles_list = [title.strip() for title in pdf_titles.split('\n') if title.strip()] if pdf_titles else []
|
686 |
+
|
687 |
+
# Modify the research search button handler:
|
688 |
+
if research_search:
|
689 |
+
with st.spinner("π Analyzing research papers..."):
|
690 |
+
if model_choice == "Groq":
|
691 |
+
if research_mode == "Custom PDFs" and pdf_links_list:
|
692 |
+
research_response = AIChains.research_chain(
|
693 |
+
prompt,
|
694 |
+
groq_model,
|
695 |
+
mode="custom_pdfs",
|
696 |
+
pdf_links=pdf_links_list,
|
697 |
+
titles=pdf_titles_list
|
698 |
+
)
|
699 |
+
else:
|
700 |
+
research_response = AIChains.research_chain(
|
701 |
+
prompt,
|
702 |
+
groq_model,
|
703 |
+
mode="arxiv"
|
704 |
+
)
|
705 |
+
sources["Research"] = research_response
|
706 |
+
else:
|
707 |
+
st.warning("βΉοΈ Research mode is only available with Groq models")
|
708 |
+
research_response = ""
|
709 |
+
context += f"\nResearch Context:\n{research_response}\n"
|
710 |
+
|
711 |
+
# Cleanup temporary files
|
712 |
+
if st.session_state.pdf_path and not pdf_file:
|
713 |
+
try:
|
714 |
+
os.unlink(st.session_state.pdf_path)
|
715 |
+
st.session_state.pdf_path = None
|
716 |
+
except Exception as e:
|
717 |
+
st.error(f"Error cleaning up temporary files: {str(e)}")
|
718 |
+
|
719 |
+
# Add a footer
|
720 |
+
st.markdown("""
|
721 |
+
<div style='position: fixed; bottom: 150px; left: 0; right: 0; text-align: center; padding: 10px; font-size: 0.8em; color: #666;'>
|
722 |
+
Made with β€οΈ using Streamlit
|
723 |
+
</div>
|
724 |
+
""", unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Libraries
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
requests
|
5 |
+
pdfplumber
|
6 |
+
tqdm
|
7 |
+
python-dotenv
|
8 |
+
lxml
|
9 |
+
beautifulsoup4
|
10 |
+
|
11 |
+
# Pinecone (Vector Database)
|
12 |
+
pinecone-client
|
13 |
+
|
14 |
+
# LangChain & OpenAI/Groq Integrations
|
15 |
+
langchain
|
16 |
+
langchain-groq
|
17 |
+
langchain-community
|
18 |
+
langchain-openai
|
19 |
+
langchain-pinecone
|
20 |
+
langchain-core
|
21 |
+
|
22 |
+
# Google Gemini API
|
23 |
+
google-generativeai
|
24 |
+
|
25 |
+
# Web Scraping
|
26 |
+
selenium
|
27 |
+
webdriver-manager
|
28 |
+
|
29 |
+
# Streamlit (for UI)
|
30 |
+
streamlit
|
31 |
+
|
32 |
+
# Search APIs
|
33 |
+
arxiv
|
34 |
+
wikipedia-api
|
35 |
+
duckduckgo-search
|