File size: 25,927 Bytes
f1592a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
import os
import streamlit as st
import pdfplumber
import requests
import google.generativeai as genai
from bs4 import BeautifulSoup
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_pinecone import PineconeVectorStore
from langchain_groq import ChatGroq
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.embeddings import Embeddings
from langchain_community.tools import DuckDuckGoSearchRun
from pinecone import Pinecone
from dotenv import load_dotenv
import numpy as np
import time
import random
from typing import List
import arxiv
import wikipedia
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.action_chains import ActionChains
from lxml import html
import base64
import os
import streamlit as st
import pdfplumber
import requests
import google.generativeai as genai
# Load environment variables
load_dotenv()

# Get API keys from environment variables
groq_key = os.getenv("GROQ_API_KEY")
pinecone_key = os.getenv("PINECONE_API_KEY")
gemini_key = os.getenv("GEMINI_API_KEY") or os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=gemini_key)
# Check if all required API keys are available
if not gemini_key:
    st.error("Gemini API key is missing. Please set either GEMINI_API_KEY or GOOGLE_API_KEY environment variable.")
    
st.set_page_config(
    page_title="AI Research Assistant",
    page_icon="πŸ”",
    layout="wide",
    initial_sidebar_state="expanded"
)

#-------------------------------------------------------------
# UTILITY FUNCTIONS
#-------------------------------------------------------------

# Gemini Embeddings class
class GeminiEmbeddings(Embeddings):
    def __init__(self, api_key):
        genai.configure(api_key=api_key)
        self.model_name = "models/embedding-001"
    
    def embed_documents(self, texts):
        return [self._convert_to_float32(genai.embed_content(
            model=self.model_name, content=text, task_type="retrieval_document"
        )["embedding"]) for text in texts]
    
    def embed_query(self, text):
        response = genai.embed_content(
            model=self.model_name, content=text, task_type="retrieval_query"
        )
        return self._convert_to_float32(response["embedding"])
    
    @staticmethod
    def _convert_to_float32(embedding):
        return np.array(embedding, dtype=np.float32).tolist()

# PDF handling functions
def extract_text_from_pdf(pdf_path):
    text = ""
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                extracted_text = page.extract_text()
                if extracted_text:
                    text += extracted_text + "\n"
        return text.strip()
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return ""

def read_data_from_doc(uploaded_file):
    docs = []
    with pdfplumber.open(uploaded_file) as pdf:
        for i, page in enumerate(pdf.pages):
            text = page.extract_text() or ""
            tables = page.extract_tables()
            table_text = "\n".join([
                "\n".join(["\t".join(cell if cell is not None else "" for cell in row) for row in table])
                for table in tables if table
            ]) if tables else ""
            images = page.images
            image_text = f"[{len(images)} image(s) detected]" if images else ""
            content = f"{text}\n\n{table_text}\n\n{image_text}".strip()
            if content:
                docs.append(Document(page_content=content, metadata={"page": i + 1}))
    return docs

def make_chunks(docs, chunk_len=1000, chunk_overlap=200):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_len, chunk_overlap=chunk_overlap
    )
    chunks = text_splitter.split_documents(docs)
    return [Document(page_content=chunk.page_content, metadata=chunk.metadata) for chunk in chunks]

# Gemini model functions
def get_gemini_model(model_name="gemini-1.5-pro", temperature=0.4):
    return genai.GenerativeModel(model_name)

def get_generation_config(temperature=0.4):
    return {
        "temperature": temperature,
        "top_p": 1,
        "top_k": 1,
        "max_output_tokens": 2048,
    }

def get_safety_settings():
    return [
        {"category": category, "threshold": "BLOCK_NONE"}
        for category in [
            "HARM_CATEGORY_HARASSMENT",
            "HARM_CATEGORY_HATE_SPEECH",
            "HARM_CATEGORY_SEXUALLY_EXPLICIT",
            "HARM_CATEGORY_DANGEROUS_CONTENT",
        ]
    ]

def generate_gemini_response(model, prompt):
    response = model.generate_content(
        prompt,
        generation_config=get_generation_config(),
        safety_settings=get_safety_settings()
    )
    if response.candidates and len(response.candidates) > 0:
        return response.candidates[0].content.parts[0].text
    return ''

def summarize_text(text):
    model = get_gemini_model()
    prompt_text = f"Summarize the following research paper very concisely:\n{text[:5000]}"  # Truncate to 5000 chars
    summary = generate_gemini_response(model, prompt_text)
    return summary

#-------------------------------------------------------------
# RESEARCH ASSISTANT MODULE
#-------------------------------------------------------------

def download_pdf(pdf_url, save_path="temp_paper.pdf"):
    try:
        response = requests.get(pdf_url)
        if response.status_code == 200:
            with open(save_path, "wb") as file:
                file.write(response.content)
            return save_path
    except Exception as e:
        st.error(f"Error downloading PDF: {e}")
    return None

def search_arxiv(query, max_results=2):
    client = arxiv.Client()
    search = arxiv.Search(query=query, max_results=max_results, sort_by=arxiv.SortCriterion.Relevance)
    
    arxiv_docs = []
    
    for result in client.results(search):
        pdf_link = next((link.href for link in result.links if 'pdf' in link.href), None)
        
        # Download, extract, and summarize PDF if link exists
        if pdf_link:
            with st.spinner(f"Processing arXiv paper: {result.title}"):
                pdf_path = download_pdf(pdf_link)
                if pdf_path:
                    text = extract_text_from_pdf(pdf_path)
                    summary = summarize_text(text)
                    # Clean up downloaded file
                    if os.path.exists(pdf_path):
                        os.remove(pdf_path)
                else:
                    summary = "PDF could not be downloaded."
        else:
            summary = "No PDF available."

        content = f"""
        **Title:** {result.title}
        **Authors:** {', '.join(author.name for author in result.authors)}
        **Published:** {result.published.strftime('%Y-%m-%d')}
        **Abstract:** {result.summary}
        **PDF Summary:** {summary}
        **PDF Link:** {pdf_link if pdf_link else 'Not available'}
        """

        arxiv_docs.append(Document(page_content=content, metadata={"source": "arXiv", "title": result.title}))
    
    return arxiv_docs

def search_wikipedia(query, max_results=2):
    try:
        page_titles = wikipedia.search(query, results=max_results)
        wiki_docs = []
        for title in page_titles:
            try:
                with st.spinner(f"Processing Wikipedia article: {title}"):
                    page = wikipedia.page(title)
                    wiki_docs.append(Document(
                        page_content=page.content[:2000], 
                        metadata={"source": "Wikipedia", "title": title}
                    ))
            except (wikipedia.exceptions.DisambiguationError, wikipedia.exceptions.PageError) as e:
                st.warning(f"Error retrieving Wikipedia page {title}: {e}")
        return wiki_docs
    except Exception as e:
        st.error(f"Error searching Wikipedia: {e}")
        return []

class ResearchAssistant:
    def __init__(self):
        # Initialize LLM
        self.llm = ChatGroq(
            api_key=groq_key,
            model="llama3-70b-8192",
            temperature=0.2
        )
        
        # Set up the prompt template
        self.prompt = ChatPromptTemplate.from_template("""
        You are an expert research assistant. Use the following context to answer the question. 
        If you don't know the answer, say so, but try your best to find relevant information 
        from the provided context and additional context.
        
        Context from user documents:
        {context}
        
        Additional context from research sources:
        {additional_context}
        
        Question: {input}
        
        Answer:
        """)
        
        # Set up the question-answer chain
        self.question_answer_chain = create_stuff_documents_chain(
            self.llm, self.prompt
        )

    def retrieve_documents(self, query):
        user_context = []
        
        # Get documents from arXiv and Wikipedia
        arxiv_docs = search_arxiv(query)
        wiki_docs = search_wikipedia(query)
        
        summarized_context = []
        for doc in arxiv_docs:
            summarized_context.append(f"**ArXiv - {doc.metadata.get('title', 'Unknown Title')}**:\n{doc.page_content}...")
            
        for doc in wiki_docs:
            summarized_context.append(f"**Wikipedia - {doc.metadata.get('title', 'Unknown Title')}**:\n{doc.page_content}...")
            
        return user_context, summarized_context
    
    def chat(self, question):
        user_context, summarized_context = self.retrieve_documents(question)
        
        input_data = {
            "input": question,
            "context": "\n\n".join(user_context),
            "additional_context": "\n\n".join(summarized_context)
        }
        
        with st.spinner("Generating answer..."):
            # Use the LLM directly
            prompt_text = f"""
            Question: {question}
            
            Additional context:
            {input_data['additional_context']}
            
            Please provide a comprehensive answer based on the above information.
            """
            response = self.llm.invoke(prompt_text)
            return response.content, summarized_context

#-------------------------------------------------------------
# DOCUMENT QA MODULE
#-------------------------------------------------------------

# Initialize retrieval chain
@st.cache_resource(show_spinner=False)
def get_retrieval_chain(uploaded_file, model):
    with st.spinner("Processing document... This may take a minute."):
        # Configure embeddings
        genai.configure(api_key=gemini_key)
        embeddings = GeminiEmbeddings(api_key=gemini_key)
        
        # Read and process document
        docs = read_data_from_doc(uploaded_file)
        splits = make_chunks(docs)
        
        # Set up vector store
        pc = Pinecone(api_key=pinecone_key)
        
        # Check if index exists, create it if not
        indexes = pc.list_indexes()
        index_name = "research-rag"
        if index_name not in [idx.name for idx in indexes]:
            pc.create_index(
                name=index_name,
                dimension=768,  # Dimension for embeddings
                metric="cosine"
            )
            
        vectorstore = PineconeVectorStore.from_documents(
            splits,
            embeddings,
            index_name=index_name,
        )
        retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 4})
        
        # Set up LLM and chain
        llm = ChatGroq(model_name=model, temperature=0.75, api_key=groq_key)
        
        system_prompt = """
        You are an AI assistant answering questions based on retrieved documents and additional context. 
        Use the provided context from both database retrieval and additional sources to answer the question. 

        - **Discard irrelevant context:** If one of the contexts (retrieved or additional) does not match the question, ignore it.
        - **Highlight conflicting information:** If multiple sources provide conflicting information, explicitly mention it by saying:
          - "According to the retrieved context, ... but as per internet sources, ..."
          - "According to the retrieved context, ... but as per internet sources, ..."
        - **Prioritize accuracy:** If neither context provides a relevant answer, say "I don't know" instead of guessing.

        Provide concise yet informative answers, ensuring clarity and completeness.

        Retrieved Context: {context}
        Additional Context: {additional_context}
        """
        
        prompt = ChatPromptTemplate.from_messages([
            ("system", system_prompt),
            ("human", "{input}\n\nRetrieved Context: {context}\n\nAdditional Context: {additional_context}"),
        ])
        
        question_answer_chain = create_stuff_documents_chain(llm, prompt)
        chain = create_retrieval_chain(retriever, question_answer_chain)
        
        return chain

#-------------------------------------------------------------
# WEB SEARCH MODULE
#-------------------------------------------------------------

# Prompt creation functions
def create_search_prompt(query, context=""):
    system_prompt = """You are a smart assistant designed to determine whether a query needs data from a web search or can be answered using a document database. 
    Consider the provided context if available. 
    If the query requires external information, No context is provided, Irrelevent context is present or latest information is required, then output the special token <SEARCH> 
    followed by relevant keywords extracted from the query to optimize for search engine results. 
    Ensure the keywords are concise and relevant. If document data is sufficient, simply return blank."""
    
    if context:
        return f"{system_prompt}\n\nContext: {context}\n\nQuery: {query}"
    
    return f"{system_prompt}\n\nQuery: {query}"

def create_summary_prompt(content):
    return f"""Please provide a comprehensive yet concise summary of the following content, highlighting the most important points and maintaining factual accuracy. Organize the information in a clear and coherent manner:

Content to summarize:
{content}

Summary:"""

# Web scraping functions
def init_selenium_driver():
    chrome_options = Options()
    chrome_options.add_argument("--headless")
    chrome_options.add_argument("--disable-gpu")
    chrome_options.add_argument("--no-sandbox")
    chrome_options.add_argument("--disable-dev-shm-usage")
    
    driver = webdriver.Chrome(options=chrome_options)
    return driver

def extract_static_page(url):
    try:
        response = requests.get(url, timeout=5)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'lxml')
        
        text = soup.get_text(separator=" ", strip=True)
        return text[:5000]

    except requests.exceptions.RequestException as e:
        st.error(f"Error fetching page: {e}")
        return None
        
def extract_dynamic_page(url, driver):
    try:
        driver.get(url)
        time.sleep(random.uniform(2, 5))
        
        body = driver.find_element(By.TAG_NAME, "body")
        ActionChains(driver).move_to_element(body).perform()
        time.sleep(random.uniform(2, 5))
        
        page_source = driver.page_source
        tree = html.fromstring(page_source)
        
        text = tree.xpath('//body//text()')
        text_content = ' '.join(text).strip()
        return text_content[:1000]

    except Exception as e:
        st.error(f"Error fetching dynamic page: {e}")
        return None

def scrape_page(url):
    if "javascript" in url or "dynamic" in url:
        driver = init_selenium_driver()
        text = extract_dynamic_page(url, driver)
        driver.quit()
    else:
        text = extract_static_page(url)
    
    return text

def scrape_web(urls, max_urls=5):
    texts = []
    
    for url in urls[:max_urls]:
        text = scrape_page(url)
        
        if text:
            texts.append(text)
        else:
            st.warning(f"Failed to retrieve content from {url}")
            
    return texts

# Main web search functions
def check_search_needed(model, query, context):
    prompt = create_search_prompt(query, context)
    response = generate_gemini_response(model, prompt)
    
    if "<SEARCH>" in response:
        search_terms = response.split("<SEARCH>")[1].strip()
        return True, search_terms
    return False, None

def summarize_content(model, content):
    prompt = create_summary_prompt(content)
    return generate_gemini_response(model, prompt)

def process_query(query, context=''):
    with st.spinner("Processing query..."):
        model = get_gemini_model()
        search_tool = DuckDuckGoSearchRun()
        
        needs_search, search_terms = check_search_needed(model, query, context)
        
        result = {
            "original_query": query,
            "needs_search": needs_search,
            "search_terms": search_terms,
            "web_content": None,
            "summary": None
        }
        
        if needs_search:
            with st.spinner(f"Searching the web for: {search_terms}"):
                search_results = search_tool.run(search_terms)
                result["web_content"] = search_results
            
            with st.spinner("Summarizing search results..."):
                summary = summarize_content(model, search_results)
                result["summary"] = summary
        
    return result

#-------------------------------------------------------------
# MAIN APP
#-------------------------------------------------------------

def display_header():
    st.title("πŸ” AI Research Assistant")
    st.markdown("Your all-in-one tool for research, document analysis, and web search")

def main():
    # App header
    display_header()
    
    # Sidebar navigation
    with st.sidebar:
        st.title("Navigation")
        app_mode = st.radio("Choose a mode:", 
                          ["Research Assistant", "Document Q&A", "Web Search"])
        
        st.markdown("---")
        st.subheader("About")
        st.markdown("""
        This AI Research Assistant helps you find and analyze information from various sources:
        - arXiv papers
        - Wikipedia articles
        - Your own uploaded documents
        - Web search results
        """)
        
        # API keys status
        st.markdown("---")
        st.subheader("API Status")
        
        if groq_key:
            st.success("βœ… Groq API connected")
        else:
            st.error("❌ Groq API key missing")
            
        if gemini_key:
            st.success("βœ… Gemini API connected")
        else:
            st.error("❌ Gemini API key missing")
            
        if pinecone_key:
            st.success("βœ… Pinecone API connected")
        else:
            st.error("❌ Pinecone API key missing")
    
    # Research Assistant Mode
    if app_mode == "Research Assistant":
        st.header("Research Assistant")
        st.markdown("Ask research questions and get answers from arXiv papers and Wikipedia.")
        
        # Initialize session state for chat history
        if "research_history" not in st.session_state:
            st.session_state.research_history = []
            
        # Initialize Research Assistant
        if "research_assistant" not in st.session_state:
            with st.spinner("Initializing Research Assistant..."):
                st.session_state.research_assistant = ResearchAssistant()
                
        # Input area
        with st.form(key="research_form"):
            question = st.text_input("Your research question:", key="research_question")
            submit_button = st.form_submit_button("Search")
            
        # Clear chat button
        if st.button("Clear Chat"):
            st.session_state.research_history = []
            st.rerun()
        
        # Process query when submitted
        if submit_button and question:
            # Add user query to chat history
            st.session_state.research_history.append({"role": "user", "content": question})
            
            # Get response from assistant
            answer, sources = st.session_state.research_assistant.chat(question)
            
            # Add assistant response to chat history
            st.session_state.research_history.append({
                "role": "assistant", 
                "content": answer,
                "sources": sources
            })
        
        # Display chat history
        for message in st.session_state.research_history:
            if message["role"] == "user":
                st.write(f"πŸ‘€ **You:** {message['content']}")
            else:
                st.write(f"πŸ€– **AI Assistant:**")
                st.markdown(message["content"])
                
                # Display sources in expandable section
                if message.get("sources"):
                    with st.expander("View Sources"):
                        for i, source in enumerate(message["sources"], 1):
                            st.markdown(f"**Source {i}:**")
                            st.markdown(source)
                            st.markdown("---")
    
    # Document Q&A Mode
    elif app_mode == "Document Q&A":
        st.header("Document Q&A")
        st.markdown("Upload a PDF document and ask questions about it.")
        
        # Model selection
        model_name = st.selectbox(
            "Select Groq Model",
            [
                "llama3-70b-8192",
                "gemma2-9b-it",
                "llama-3.3-70b-versatile",
                "llama-3.1-8b-instant",
                "llama-guard-3-8b",
                "mixtral-8x7b-32768",
                "deepseek-r1-distill-llama-70b",
                "llama-3.2-1b-preview"
            ],
            index=0
        )
        
        # Initialize session state for conversation history
        if 'document_conversation' not in st.session_state:
            st.session_state.document_conversation = []
        
        # File upload
        uploaded_file = st.file_uploader("Upload a PDF document", type="pdf")
        
        if uploaded_file:
            try:
                chain = get_retrieval_chain(
                    uploaded_file, 
                    model_name
                )
                
                # Show success message
                st.success("Document processed successfully! You can now ask questions.")
                
                # Display conversation history
                for q, a in st.session_state.document_conversation:
                    with st.chat_message("user"):
                        st.write(q)
                    with st.chat_message("assistant"):
                        st.write(a)
                
                # Question input
                question = st.chat_input("Ask a question about your document...")
                
                if question:
                    with st.chat_message("user"):
                        st.write(question)
                        
                    with st.chat_message("assistant"):
                        with st.spinner("Thinking..."):
                            additional_context = ""  # Can be modified to add external context if needed
                            result = chain.invoke({
                                "input": question,
                                "additional_context": additional_context
                            })
                            answer = result['answer']
                            st.write(answer)
                    
                    # Store in conversation history
                    st.session_state.document_conversation.append((question, answer))
                    
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")
                
        elif not (groq_key and gemini_key and pinecone_key):
            st.warning("Please make sure all API keys are properly configured.")
    
    # Web Search Mode
    else:
        st.header("Web Search")
        st.markdown("Search the web for answers to your questions.")
        
        # Input area
        with st.form("web_query_form"):
            query = st.text_area("Enter your research question", height=100, 
                               placeholder="E.g., What are the latest developments in quantum computing?")
            context = st.text_area("Optional: Add any context", height=100, 
                                   placeholder="Add any additional context that might help with the research")
            submit_button = st.form_submit_button("πŸ” Research")
        
        if submit_button and query:
            result = process_query(query, context)
            
            if result["needs_search"]:
                st.success("Research completed!")
                
                with st.expander("Search Details", expanded=False):
                    st.subheader("Search Terms Used")
                    st.info(result["search_terms"])
                    
                    st.subheader("Raw Web Content")
                    st.text_area("Web Content", result["web_content"], height=200)
                
                st.subheader("Summary of Findings")
                st.markdown(result["summary"])
            else:
                st.info("Based on the analysis, no web search was needed for this query.")

if __name__ == "__main__":
    main()