File size: 7,177 Bytes
f15cb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eee85a
f15cb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eee85a
f15cb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eee85a
f15cb69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import pandas as pd
import cv2, os
import argparse, subprocess
import supervision as sv
import numpy as np
import time, csv, json
import datetime, requests


def initial_setup()-> None :
    """
        Initializes the data folder, csv file 
        and signal json files.
    """
    if not os.path.exists('data') :
        os.makedirs('data')
    if not os.path.exists("data/density.csv") : 
        fp = open('data/density.csv', 'x')
        fp.close()  
    if not os.path.exists('data/signal.json'):
        fp = open('data/signal.json', 'x')
        fp.close() 
        data = {"Flag" : 1, 'initiate' : 1}
        with open("data/signal.json", "w") as outfile:
            json.dump(data, outfile)
            outfile.close()
    main()



def parse_arguments() -> argparse.Namespace:
    """
        Initializes the commandline argument parser.
    """
    parser = argparse.ArgumentParser(description='Crowd detection')
    parser.add_argument(
        '--webcam-resolution',
        default=[1280,720],
        nargs=2,
        type=int
    )
    args = parser.parse_args()
    return args


def main():
    """
        Initializes the global variables to use in other methods.
    """
    from ultralytics import YOLO
    global args, model, frame_count, startSeconds, firstFrame, \
        videoFPS, videoHeight, videoWidth, fps_set
    args = parse_arguments()
    model = YOLO(model='model.pt')
    frame_count = 0
    startSeconds = datetime.datetime.strptime('00:00:00', '%H:%M:%S')
    firstFrame = True
    videoFPS = 0
    videoWidth = 0
    videoHeight = 0
    fps_set = set()
    


def process_frame(frame : np.ndarray, _) -> np.ndarray: 
    """
        Processes the frame and return the processed frame
        with bounding boxex and labels from 'frame'
    """
    ZONE_SIDES = np.array([
    [0,0],
    [videoWidth, 0],
    [videoWidth, videoHeight],
    [0,videoHeight]
    ])
    
    zone = sv.PolygonZone(polygon=ZONE_SIDES, frame_resolution_wh=tuple(args.webcam_resolution))
    
    start_time = time.time()
    
    from ultralytics import YOLO
    model = YOLO(model='model.pt', )
    results = model(frame, imgsz=1280)[0]
    detections = sv.Detections.from_yolov8(results)
    detections = detections[detections.class_id == 0]
    zone.trigger(detections=detections)
    
    box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=1, text_scale=0.5, text_padding = 2)
    zone_annotator = sv.PolygonZoneAnnotator(zone=zone, color=sv.Color.white())
    
    labels = [
        f"{model.model.names[class_id]} {confidence :0.2f}"
        for _, confidence, class_id,_ 
        in detections
    ]
    
    frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)
    frame = zone_annotator.annotate(scene=frame)
    
    end_time = time.time()
    fps = 1 / (end_time - start_time)
    global fps_set
    fps_set.add(fps)
    cv2.putText(frame, "FPS: " + str(int(fps)), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
    
    global frame_count
    global startSeconds
    global firstFrame
    frame_count = frame_count + 1
    
    if firstFrame :
        writeCSV(startSeconds.strftime('%M:%S'), len(labels))
        firstFrame = False
    my_time = videoFPS * int(max(list(fps_set)))
    if frame_count == my_time:
        startSeconds += datetime.timedelta(seconds=2)
        writeCSV(startSeconds.strftime('%M:%S'), len(labels))
        frame_count = 0
    return frame

def writeCSV(startSeconds, count):
    """
        Writes the counts into a csv file 
        using 'Time' and 'Counts'.
    """
    with open('data/density.csv', mode='a', newline='') as csvfile:
        csvwriter = csv.writer(csvfile)
        csvwriter.writerow([startSeconds, count])

def detect(imgPath, ) -> int:
    """
        Detects the person in a image using
        'Image path' and 'Threshold confidence'
    """
    from ultralytics import YOLO
    args = parse_arguments()
    frame_width, frame_height = args.webcam_resolution
    model = YOLO(model='model.pt',)
    frame = cv2.imread(imgPath)
    
    box_annotator = sv.BoxAnnotator(
        thickness = 1,
        text_thickness = 1,
        text_scale = 0.5,
        text_padding = 2
    )
    
    height, width, channels = frame.shape
    
    IMG_SIDES = np.array([
    [0,0],
    [width, 0],
    [width, height],
    [0,height]
    ])
    zone = sv.PolygonZone(polygon=IMG_SIDES, frame_resolution_wh=tuple(args.webcam_resolution))
    zone_annotator = sv.PolygonZoneAnnotator(zone=zone, color=sv.Color.white())
    
    result = model(frame)[0]
    detection = sv.Detections.from_yolov8(result)
    
    labels = [
        f"{model.model.names[class_id]} {confidence :0.2f}"
        for _, confidence, class_id,_ 
        in detection
    ]
    
    print(f"The count of people in the image is {len(labels)}")

    frame = box_annotator.annotate(scene = frame, detections = detection, labels = labels)
    
    zone.trigger(detections=detection)
    frame = zone_annotator.annotate(scene=frame)
    cv2.imwrite('data/result.jpg', frame)
    return len(labels)

def detectVideo(videoPath, ) :
    """
        Detects the person in a Video using
        'Video path' and 'Threshold confidence'
    """
    video_info = sv.VideoInfo.from_video_path(videoPath)
    global videoFPS, videoWidth, videoHeight
    videoFPS = video_info.fps
    videoHeight = video_info.height
    videoWidth = video_info.width
    
    with open('data/density.csv', 'w', newline='') as csvfile:
        csvwriter = csv.writer(csvfile)
        csvwriter.writerow(['Time', 'Count'])
    
    sv.process_video(source_path=videoPath, target_path="data/output.mp4", callback=process_frame)
    
def getDataframe():
    """
        Reads and returns the dataframe from csv file
    """
    df = pd.read_csv('data/density.csv')
    return df

def checkStart() :
    """
        Reads and return the flag status 
        from signal file.
    """
    f = open('data/signal.json','r')
    data = json.load(f)
    f.close()
    return data['initiate']

def doneSetup():
    """
        Reads and Turn the Flag to off,
        to indicate that initial setup is done
    """
    f = open('data/signal.json','r')
    data = json.load(f)
    f.close()
    data['initiate'] = 0
    with open("data/signal.json", "w") as outfile:
        json.dump(data, outfile)
        outfile.close()

def getFlag():
    """
        Reads and return the flag value,
    """
    f = open('data/signal.json','r')
    data = json.load(f)
    f.close()
    return data['Flag']

def setFlag():
    """
        Reads and Sets the Flag to Off,
        To restrict processing the video.
    """
    f = open('data/signal.json','r')
    data = json.load(f)
    f.close()
    data['Flag'] = 0
    with open("data/signal.json", "w") as outfile:
        json.dump(data, outfile)
        outfile.close()

def resetFlag():
    """
        Reads and Sets the Flag to On,
        To allow processing the video.
    """
    f = open('data/signal.json','r')
    data = json.load(f)
    f.close()
    data['Flag'] = 1
    with open("data/signal.json", "w") as outfile:
        json.dump(data, outfile)
        outfile.close()