Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| from transformers import pipeline | |
| import torch | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| transcriber = pipeline("automatic-speech-recognition", model="mahimairaja/whisper-base-tamil", \ | |
| chunk_length_s=15, device=device) | |
| transcriber.model.config.forced_decoder_ids = transcriber.tokenizer.get_decoder_prompt_ids(language="ta", task="transcribe") | |
| def transcribe(audio): | |
| return transcriber(audio)["text"] | |
| TITLE = "ASR for ALL - Democratizing Tamil" | |
| demo = gr.Blocks() | |
| mic_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=gr.Audio(sources="microphone", type="filepath"), | |
| outputs="text", | |
| title=TITLE, | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=gr.Audio(sources="upload", type="filepath"), | |
| outputs="text", | |
| examples=[ | |
| "assets/tamil-audio-01.mp3", | |
| "assets/tamil-audio-02.mp3", | |
| "assets/tamil-audio-03.mp3", | |
| "assets/tamil-audio-04.mp3", | |
| ], | |
| title=TITLE, | |
| ) | |
| with demo: | |
| gr.TabbedInterface( | |
| [mic_transcribe, file_transcribe], | |
| ["Real Time Transcription", "Audio File", ] | |
| ) | |
| demo.launch(share=True) |