Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.linear_model import LinearRegression
|
| 4 |
+
|
| 5 |
+
# Sample data
|
| 6 |
+
data = pd.DataFrame({
|
| 7 |
+
"sqft": [1500, 1800, 2400, 3000, 3500],
|
| 8 |
+
"bedrooms": [3, 4, 3, 5, 4],
|
| 9 |
+
"bathrooms": [2, 2, 3, 4, 3],
|
| 10 |
+
"price": [300000, 350000, 400000, 500000, 450000]
|
| 11 |
+
})
|
| 12 |
+
|
| 13 |
+
# Train model
|
| 14 |
+
X = data[["sqft", "bedrooms", "bathrooms"]]
|
| 15 |
+
y = data["price"]
|
| 16 |
+
model = LinearRegression().fit(X, y)
|
| 17 |
+
|
| 18 |
+
# Prediction function
|
| 19 |
+
def predict_price(sqft, bedrooms, bathrooms):
|
| 20 |
+
try:
|
| 21 |
+
input_df = pd.DataFrame([[sqft, bedrooms, bathrooms]], columns=X.columns)
|
| 22 |
+
pred = model.predict(input_df)[0]
|
| 23 |
+
return f"🏠 Estimated Price: ${pred:,.0f}"
|
| 24 |
+
except Exception as e:
|
| 25 |
+
return f"⚠️ Error: {e}"
|
| 26 |
+
|
| 27 |
+
# Gradio UI
|
| 28 |
+
demo = gr.Interface(
|
| 29 |
+
fn=predict_price,
|
| 30 |
+
inputs=[
|
| 31 |
+
gr.Slider(500, 5000, value=2000, label="Square Footage"),
|
| 32 |
+
gr.Slider(1, 6, value=3, label="Bedrooms"),
|
| 33 |
+
gr.Slider(1, 5, value=2, label="Bathrooms")
|
| 34 |
+
],
|
| 35 |
+
outputs=gr.Textbox(label="Prediction"),
|
| 36 |
+
title="🏡 House Price Predictor"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
demo.launch()
|