mahesh1209 commited on
Commit
88c6363
·
verified ·
1 Parent(s): 12f428a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from sklearn.linear_model import LinearRegression
4
+
5
+ # Sample data
6
+ data = pd.DataFrame({
7
+ "sqft": [1500, 1800, 2400, 3000, 3500],
8
+ "bedrooms": [3, 4, 3, 5, 4],
9
+ "bathrooms": [2, 2, 3, 4, 3],
10
+ "price": [300000, 350000, 400000, 500000, 450000]
11
+ })
12
+
13
+ # Train model
14
+ X = data[["sqft", "bedrooms", "bathrooms"]]
15
+ y = data["price"]
16
+ model = LinearRegression().fit(X, y)
17
+
18
+ # Prediction function
19
+ def predict_price(sqft, bedrooms, bathrooms):
20
+ try:
21
+ input_df = pd.DataFrame([[sqft, bedrooms, bathrooms]], columns=X.columns)
22
+ pred = model.predict(input_df)[0]
23
+ return f"🏠 Estimated Price: ${pred:,.0f}"
24
+ except Exception as e:
25
+ return f"⚠️ Error: {e}"
26
+
27
+ # Gradio UI
28
+ demo = gr.Interface(
29
+ fn=predict_price,
30
+ inputs=[
31
+ gr.Slider(500, 5000, value=2000, label="Square Footage"),
32
+ gr.Slider(1, 6, value=3, label="Bedrooms"),
33
+ gr.Slider(1, 5, value=2, label="Bathrooms")
34
+ ],
35
+ outputs=gr.Textbox(label="Prediction"),
36
+ title="🏡 House Price Predictor"
37
+ )
38
+
39
+ demo.launch()