# -*- coding: utf-8 -*- import os import gradio as gr import whisper from gtts import gTTS from groq import Groq # Set up Groq API client client = Groq( api_key="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", ) # Load Whisper model model = whisper.load_model("base") def chatbot(audio): # Transcribe the audio input using Whisper transcription = model.transcribe(audio) user_input = transcription["text"] # Generate a response using Llama 8B via Groq API chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": user_input, } ], model="llama3-8b-8192", ) response_text = chat_completion.choices[0].message.content # Convert the response text to speech using gTTS tts = gTTS(text=response_text, lang='en') tts.save("response.mp3") return response_text, "response.mp3" # Create a custom interface def build_interface(): with gr.Blocks() as demo: gr.Markdown( """

Voice-to-Voice Chatbot

Powered by OpenAI Whisper, Llama 8B, and gTTS

Talk to the AI-powered chatbot and get responses in real-time. Start by recording your voice.

""" ) with gr.Row(): with gr.Column(scale=1): audio_input = gr.Audio(type="filepath", label="Record Your Voice") with gr.Column(scale=2): chatbot_output_text = gr.Textbox(label="Chatbot Response") chatbot_output_audio = gr.Audio(label="Audio Response") submit_button = gr.Button("Submit") submit_button.click(chatbot, inputs=audio_input, outputs=[chatbot_output_text, chatbot_output_audio]) return demo # Launch the interface if __name__ == "__main__": interface = build_interface() interface.launch()