Spaces:
Sleeping
Sleeping
File size: 7,265 Bytes
99fd41f 818f654 cf1362c 818f654 cf1362c 818f654 cf1362c 818f654 cf1362c e113c95 818f654 e113c95 cf1362c 818f654 e113c95 818f654 99fd41f 818f654 e113c95 818f654 cf1362c 818f654 cf1362c e113c95 818f654 cf1362c e113c95 cf1362c e113c95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import streamlit as st
import yaml
import logging
import pandas as pd
from cryptography.fernet import Fernet, InvalidToken
from dotenv import load_dotenv
from io import StringIO
import modeling
def df_to_csv(df):
csv = StringIO()
df.to_csv(csv, index=True)
csv.seek(0)
csv_data = csv.getvalue()
return(csv_data)
def dict_to_yaml(data):
return yaml.dump(data, default_flow_style=False)
def yaml_to_dict(yaml_str):
return yaml.safe_load(yaml_str)
def initialize():
logging.basicConfig(level=logging.INFO)
load_dotenv()
st.session_state.setdefault('config', None)
st.session_state.setdefault('encryption_key', None)
st.session_state.setdefault('is_authenticated', False)
st.session_state.setdefault('db', None)
st.session_state.setdefault('search_query', None)
st.session_state.setdefault('search_results', pd.DataFrame())
if st.session_state['config'] is None:
with open('config.yaml', 'r') as stream:
st.session_state['config'] = yaml.safe_load(stream)
def show_authentication():
with st.container(height=400, border=None, key=None):
with open('tos.md', 'r', encoding='utf-8') as f:
tos_content = f.read()
st.write(tos_content)
checkbox1 = "I agree to use this application **solely for non-commercial research purposes**. Any other usage is **strictly prohibited**!"
checkbox2 = "I have **read**, **understood**, and **agree** to be bound by the Terms of Service and Privacy Policy."
if st.checkbox(label=checkbox1) & st.checkbox(label=checkbox2):
with st.form("authentication_form", border=False):
st.markdown("""
## Authentication
This app is a research preview and requires authentication.
All data is encrypted. Please use your 32-byte encryption key to proceed!
""")
st.text_input(
label="๐ Encryption key",
value="",
max_chars=None,
key='encryption_key',
placeholder="A URL-safe base64-encoded 32-byte key"
)
submitted = st.form_submit_button(
label="Authenticate",
type="primary",
use_container_width=True
)
if submitted:
try:
modeling.load_db()
st.rerun()
except InvalidToken:
error = f"Error: The encryption key you have entered is invalid!"
st.error(body=error, icon="๐")
logging.error(error)
st.session_state['is_authenticated'] = False
return
except ValueError as error:
st.error(body=error, icon="๐")
logging.error(error)
st.session_state['is_authenticated'] = False
return
# with placeholder:
# with st.container():
# with st.container(height=200, border=None, key=None):
# with open('tos.md', 'r', encoding='utf-8') as f:
# tos_content = f.read()
# st.write(tos_content)
# checkbox1 = "I agree to use this application **solely for non-commercial research purposes**. Any other usage is **strictly prohibited**!"
# checkbox2 = "I have **read**, **understood**, and **agree** to be bound by the Terms of Service and Privacy Policy."
# if st.checkbox(label=checkbox1) & st.checkbox(label=checkbox2):
# with st.form("authentication_form"):
# st.markdown("""
# ## Authentication
# This app is a research preview and requires authentication.
# All data is encrypted. Please use your 32-byte encryption key to proceed!
# """)
def main():
with st.container():
st.divider()
st.markdown("""
## Try it yourself!
Define a scale by entering individual items in YAML format.
After form submission, a vector representation for the scale is calculated using the selected encoder model.
Cosine similarities between this vector and the representations of existing scales are then computed.
The resulting table outputs measures with high semantic overlap.
""")
with st.container():
if 'input_items' not in st.session_state:
st.session_state['input_items'] = dict_to_yaml(st.session_state['config']['input_items'])
with st.form("submission_form"):
st.text_area(
label="Search for similar measures by entering items that constitute the scale (YAML-Formatted):",
height=175,
key='input_items'
)
submitted = st.form_submit_button(
label="Search Synth-Net",
type="primary",
use_container_width=True
)
if submitted:
try:
st.session_state['search_query'] = yaml_to_dict(st.session_state['input_items'])
except yaml.YAMLError as e:
st.error(f"Yikes, you better get your YAML straight! Check https://yaml.org/ for help! \n {e}")
return
if not st.session_state.get('model'):
modeling.load_model()
modeling.search()
with st.container():
if not st.session_state['search_results'].empty:
with st.spinner('Rendering search results...'):
df = st.session_state['search_results'].style.format({
'Match': '{:.2f}'.format,
'Scale': str.capitalize,
'Instrument': str.capitalize,
})
st.dataframe(df, use_container_width=True, hide_index=True)
if __name__ == '__main__':
st.set_page_config(page_title='Synth-Net')
st.markdown("# The Synthetic Nomological Net")
st.markdown("""
Psychological science is experiencing rapid growth in constructs and measures, partly due to refinement and new research areas,
but also due to excessive proliferation. This proliferation, driven by academic incentives for novelty, may lead to redundant
constructs with different names (jangle fallacy) and seemingly similar constructs with little content overlap (jingle fallacy).
This web application uses state-of-the-art models and methods in natural language processing to search for semantic overlap in measures.
It analyzes textual data from over 21,000 scales (containing more than 330,000 items) in an effort to reduce redundancies in measures used in the behavioral sciences.
""", unsafe_allow_html=True)
initialize()
if st.session_state['is_authenticated']:
main()
else:
show_authentication() |