Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
+
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
from icevision.all import *
|
5 |
+
import PIL
|
6 |
+
|
7 |
+
class_map = ClassMap(['apple','banana','orange'])
|
8 |
+
|
9 |
+
presize = 512
|
10 |
+
size = 384
|
11 |
+
|
12 |
+
train_tfms = tfms.A.Adapter(
|
13 |
+
[*tfms.A.aug_tfms(size=size, presize=presize), tfms.A.Normalize()]
|
14 |
+
)
|
15 |
+
valid_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size), tfms.A.Normalize()])
|
16 |
+
|
17 |
+
model1 = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True), num_classes=len(class_map))
|
18 |
+
state_dict = torch.load('fasterRCNNFruits.pth', map_location=torch.device('cpu'))
|
19 |
+
model1.load_state_dict(state_dict)
|
20 |
+
|
21 |
+
def show_preds(input_image, display_label, display_bbox, detection_threshold):
|
22 |
+
|
23 |
+
if detection_threshold==0: detection_threshold=0.5
|
24 |
+
|
25 |
+
img = PIL.Image.fromarray(input_image, 'RGB')
|
26 |
+
|
27 |
+
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, valid_tfms, model1, class_map=ClassMap(class_map), detection_threshold=detection_threshold,
|
28 |
+
display_label=display_label, display_bbox=display_bbox, return_img=True,
|
29 |
+
font_size=16, label_color="#FF59D6")
|
30 |
+
|
31 |
+
return pred_dict['img']
|
32 |
+
|
33 |
+
# display_chkbox = gr.inputs.CheckboxGroup(["Label", "BBox"], label="Display", default=True)
|
34 |
+
display_chkbox_label = gr.inputs.Checkbox(label="Label", default=True)
|
35 |
+
display_chkbox_box = gr.inputs.Checkbox(label="Box", default=True)
|
36 |
+
|
37 |
+
detection_threshold_slider = gr.inputs.Slider(minimum=0, maximum=1, step=0.1, default=0.5, label="Detection Threshold")
|
38 |
+
|
39 |
+
outputs = gr.outputs.Image(type="pil")
|
40 |
+
|
41 |
+
gr_interface = gr.Interface(fn=show_preds, inputs=["image", display_chkbox_label, display_chkbox_box, detection_threshold_slider], outputs=outputs, examples=[['mixed_24.jpg', True, True, 0.5], ['mixed_24.jpg', True, True, 0.5]])
|
42 |
+
|
43 |
+
gr_interface.launch(inline=False, share=False, debug=True)
|