import asyncio import json import re from typing import Union from collections import Counter, defaultdict import warnings from .utils import ( logger, clean_str, compute_mdhash_id, decode_tokens_by_tiktoken, encode_string_by_tiktoken, is_float_regex, list_of_list_to_csv, pack_user_ass_to_openai_messages, split_string_by_multi_markers, truncate_list_by_token_size, process_combine_contexts, locate_json_string_body_from_string, ) from .base import ( BaseGraphStorage, BaseKVStorage, BaseVectorStorage, TextChunkSchema, QueryParam, ) from .prompt import GRAPH_FIELD_SEP, PROMPTS def chunking_by_token_size( content: str, overlap_token_size=128, max_token_size=1024, tiktoken_model="gpt-4o" ): tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model) results = [] for index, start in enumerate( range(0, len(tokens), max_token_size - overlap_token_size) ): chunk_content = decode_tokens_by_tiktoken( tokens[start : start + max_token_size], model_name=tiktoken_model ) results.append( { "tokens": min(max_token_size, len(tokens) - start), "content": chunk_content.strip(), "chunk_order_index": index, } ) return results async def _handle_entity_relation_summary( entity_or_relation_name: str, description: str, global_config: dict, ) -> str: use_llm_func: callable = global_config["llm_model_func"] llm_max_tokens = global_config["llm_model_max_token_size"] tiktoken_model_name = global_config["tiktoken_model_name"] summary_max_tokens = global_config["entity_summary_to_max_tokens"] tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name) if len(tokens) < summary_max_tokens: # No need for summary return description prompt_template = PROMPTS["summarize_entity_descriptions"] use_description = decode_tokens_by_tiktoken( tokens[:llm_max_tokens], model_name=tiktoken_model_name ) context_base = dict( entity_name=entity_or_relation_name, description_list=use_description.split(GRAPH_FIELD_SEP), ) use_prompt = prompt_template.format(**context_base) logger.debug(f"Trigger summary: {entity_or_relation_name}") summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens) return summary async def _handle_single_entity_extraction( record_attributes: list[str], chunk_key: str, ): if len(record_attributes) < 4 or record_attributes[0] != '"entity"': return None # add this record as a node in the G entity_name = clean_str(record_attributes[1].upper()) if not entity_name.strip(): return None entity_type = clean_str(record_attributes[2].upper()) entity_description = clean_str(record_attributes[3]) entity_source_id = chunk_key return dict( entity_name=entity_name, entity_type=entity_type, description=entity_description, source_id=entity_source_id, ) async def _handle_single_relationship_extraction( record_attributes: list[str], chunk_key: str, ): if len(record_attributes) < 5 or record_attributes[0] != '"relationship"': return None # add this record as edge source = clean_str(record_attributes[1].upper()) target = clean_str(record_attributes[2].upper()) edge_description = clean_str(record_attributes[3]) edge_keywords = clean_str(record_attributes[4]) edge_source_id = chunk_key weight = ( float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0 ) return dict( src_id=source, tgt_id=target, weight=weight, description=edge_description, keywords=edge_keywords, source_id=edge_source_id, ) async def _merge_nodes_then_upsert( entity_name: str, nodes_data: list[dict], knowledge_graph_inst: BaseGraphStorage, global_config: dict, ): already_entitiy_types = [] already_source_ids = [] already_description = [] already_node = await knowledge_graph_inst.get_node(entity_name) if already_node is not None: already_entitiy_types.append(already_node["entity_type"]) already_source_ids.extend( split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP]) ) already_description.append(already_node["description"]) entity_type = sorted( Counter( [dp["entity_type"] for dp in nodes_data] + already_entitiy_types ).items(), key=lambda x: x[1], reverse=True, )[0][0] description = GRAPH_FIELD_SEP.join( sorted(set([dp["description"] for dp in nodes_data] + already_description)) ) source_id = GRAPH_FIELD_SEP.join( set([dp["source_id"] for dp in nodes_data] + already_source_ids) ) description = await _handle_entity_relation_summary( entity_name, description, global_config ) node_data = dict( entity_type=entity_type, description=description, source_id=source_id, ) await knowledge_graph_inst.upsert_node( entity_name, node_data=node_data, ) node_data["entity_name"] = entity_name return node_data async def _merge_edges_then_upsert( src_id: str, tgt_id: str, edges_data: list[dict], knowledge_graph_inst: BaseGraphStorage, global_config: dict, ): already_weights = [] already_source_ids = [] already_description = [] already_keywords = [] if await knowledge_graph_inst.has_edge(src_id, tgt_id): already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id) already_weights.append(already_edge["weight"]) already_source_ids.extend( split_string_by_multi_markers(already_edge["source_id"], [GRAPH_FIELD_SEP]) ) already_description.append(already_edge["description"]) already_keywords.extend( split_string_by_multi_markers(already_edge["keywords"], [GRAPH_FIELD_SEP]) ) weight = sum([dp["weight"] for dp in edges_data] + already_weights) description = GRAPH_FIELD_SEP.join( sorted(set([dp["description"] for dp in edges_data] + already_description)) ) keywords = GRAPH_FIELD_SEP.join( sorted(set([dp["keywords"] for dp in edges_data] + already_keywords)) ) source_id = GRAPH_FIELD_SEP.join( set([dp["source_id"] for dp in edges_data] + already_source_ids) ) for need_insert_id in [src_id, tgt_id]: if not (await knowledge_graph_inst.has_node(need_insert_id)): await knowledge_graph_inst.upsert_node( need_insert_id, node_data={ "source_id": source_id, "description": description, "entity_type": '"UNKNOWN"', }, ) description = await _handle_entity_relation_summary( (src_id, tgt_id), description, global_config ) await knowledge_graph_inst.upsert_edge( src_id, tgt_id, edge_data=dict( weight=weight, description=description, keywords=keywords, source_id=source_id, ), ) edge_data = dict( src_id=src_id, tgt_id=tgt_id, description=description, keywords=keywords, ) return edge_data async def extract_entities( chunks: dict[str, TextChunkSchema], knowledge_graph_inst: BaseGraphStorage, entity_vdb: BaseVectorStorage, relationships_vdb: BaseVectorStorage, global_config: dict, ) -> Union[BaseGraphStorage, None]: use_llm_func: callable = global_config["llm_model_func"] entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"] ordered_chunks = list(chunks.items()) entity_extract_prompt = PROMPTS["entity_extraction"] context_base = dict( tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"], record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"], completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"], entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]), ) continue_prompt = PROMPTS["entiti_continue_extraction"] if_loop_prompt = PROMPTS["entiti_if_loop_extraction"] already_processed = 0 already_entities = 0 already_relations = 0 async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]): nonlocal already_processed, already_entities, already_relations chunk_key = chunk_key_dp[0] chunk_dp = chunk_key_dp[1] content = chunk_dp["content"] hint_prompt = entity_extract_prompt.format(**context_base, input_text=content) final_result = await use_llm_func(hint_prompt) history = pack_user_ass_to_openai_messages(hint_prompt, final_result) for now_glean_index in range(entity_extract_max_gleaning): glean_result = await use_llm_func(continue_prompt, history_messages=history) history += pack_user_ass_to_openai_messages(continue_prompt, glean_result) final_result += glean_result if now_glean_index == entity_extract_max_gleaning - 1: break if_loop_result: str = await use_llm_func( if_loop_prompt, history_messages=history ) if_loop_result = if_loop_result.strip().strip('"').strip("'").lower() if if_loop_result != "yes": break records = split_string_by_multi_markers( final_result, [context_base["record_delimiter"], context_base["completion_delimiter"]], ) maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) for record in records: record = re.search(r"\((.*)\)", record) if record is None: continue record = record.group(1) record_attributes = split_string_by_multi_markers( record, [context_base["tuple_delimiter"]] ) if_entities = await _handle_single_entity_extraction( record_attributes, chunk_key ) if if_entities is not None: maybe_nodes[if_entities["entity_name"]].append(if_entities) continue if_relation = await _handle_single_relationship_extraction( record_attributes, chunk_key ) if if_relation is not None: maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append( if_relation ) already_processed += 1 already_entities += len(maybe_nodes) already_relations += len(maybe_edges) now_ticks = PROMPTS["process_tickers"][ already_processed % len(PROMPTS["process_tickers"]) ] print( f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r", end="", flush=True, ) return dict(maybe_nodes), dict(maybe_edges) # use_llm_func is wrapped in ascynio.Semaphore, limiting max_async callings results = await asyncio.gather( *[_process_single_content(c) for c in ordered_chunks] ) print() # clear the progress bar maybe_nodes = defaultdict(list) maybe_edges = defaultdict(list) for m_nodes, m_edges in results: for k, v in m_nodes.items(): maybe_nodes[k].extend(v) for k, v in m_edges.items(): maybe_edges[tuple(sorted(k))].extend(v) all_entities_data = await asyncio.gather( *[ _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config) for k, v in maybe_nodes.items() ] ) all_relationships_data = await asyncio.gather( *[ _merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config) for k, v in maybe_edges.items() ] ) if not len(all_entities_data): logger.warning("Didn't extract any entities, maybe your LLM is not working") return None if not len(all_relationships_data): logger.warning( "Didn't extract any relationships, maybe your LLM is not working" ) return None if entity_vdb is not None: data_for_vdb = { compute_mdhash_id(dp["entity_name"], prefix="ent-"): { "content": dp["entity_name"] + dp["description"], "entity_name": dp["entity_name"], } for dp in all_entities_data } await entity_vdb.upsert(data_for_vdb) if relationships_vdb is not None: data_for_vdb = { compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): { "src_id": dp["src_id"], "tgt_id": dp["tgt_id"], "content": dp["keywords"] + dp["src_id"] + dp["tgt_id"] + dp["description"], } for dp in all_relationships_data } await relationships_vdb.upsert(data_for_vdb) return knowledge_graph_inst async def local_query( query, knowledge_graph_inst: BaseGraphStorage, entities_vdb: BaseVectorStorage, relationships_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, global_config: dict, ) -> str: context = None use_model_func = global_config["llm_model_func"] kw_prompt_temp = PROMPTS["keywords_extraction"] kw_prompt = kw_prompt_temp.format(query=query) result = await use_model_func(kw_prompt) json_text = locate_json_string_body_from_string(result) try: keywords_data = json.loads(json_text) keywords = keywords_data.get("low_level_keywords", []) keywords = ", ".join(keywords) except json.JSONDecodeError: try: result = ( result.replace(kw_prompt[:-1], "") .replace("user", "") .replace("model", "") .strip() ) result = "{" + result.split("{")[-1].split("}")[0] + "}" keywords_data = json.loads(result) keywords = keywords_data.get("low_level_keywords", []) keywords = ", ".join(keywords) # Handle parsing error except json.JSONDecodeError as e: print(f"JSON parsing error: {e}") return PROMPTS["fail_response"] if keywords: context = await _build_local_query_context( keywords, knowledge_graph_inst, entities_vdb, text_chunks_db, query_param, ) if query_param.only_need_context: return context if context is None: return PROMPTS["fail_response"] sys_prompt_temp = PROMPTS["rag_response"] sys_prompt = sys_prompt_temp.format( context_data=context, response_type=query_param.response_type ) response = await use_model_func( query, system_prompt=sys_prompt, ) if len(response) > len(sys_prompt): response = ( response.replace(sys_prompt, "") .replace("user", "") .replace("model", "") .replace(query, "") .replace("<system>", "") .replace("</system>", "") .strip() ) return response async def _build_local_query_context( query, knowledge_graph_inst: BaseGraphStorage, entities_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, ): results = await entities_vdb.query(query, top_k=query_param.top_k) if not len(results): return None node_datas = await asyncio.gather( *[knowledge_graph_inst.get_node(r["entity_name"]) for r in results] ) if not all([n is not None for n in node_datas]): logger.warning("Some nodes are missing, maybe the storage is damaged") node_degrees = await asyncio.gather( *[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results] ) node_datas = [ {**n, "entity_name": k["entity_name"], "rank": d} for k, n, d in zip(results, node_datas, node_degrees) if n is not None ] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram. use_text_units = await _find_most_related_text_unit_from_entities( node_datas, query_param, text_chunks_db, knowledge_graph_inst ) use_relations = await _find_most_related_edges_from_entities( node_datas, query_param, knowledge_graph_inst ) logger.info( f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units" ) entites_section_list = [["id", "entity", "type", "description", "rank"]] for i, n in enumerate(node_datas): entites_section_list.append( [ i, n["entity_name"], n.get("entity_type", "UNKNOWN"), n.get("description", "UNKNOWN"), n["rank"], ] ) entities_context = list_of_list_to_csv(entites_section_list) relations_section_list = [ ["id", "source", "target", "description", "keywords", "weight", "rank"] ] for i, e in enumerate(use_relations): relations_section_list.append( [ i, e["src_tgt"][0], e["src_tgt"][1], e["description"], e["keywords"], e["weight"], e["rank"], ] ) relations_context = list_of_list_to_csv(relations_section_list) text_units_section_list = [["id", "content"]] for i, t in enumerate(use_text_units): text_units_section_list.append([i, t["content"]]) text_units_context = list_of_list_to_csv(text_units_section_list) return f""" -----Entities----- ```csv {entities_context} ``` -----Relationships----- ```csv {relations_context} ``` -----Sources----- ```csv {text_units_context} ``` """ async def _find_most_related_text_unit_from_entities( node_datas: list[dict], query_param: QueryParam, text_chunks_db: BaseKVStorage[TextChunkSchema], knowledge_graph_inst: BaseGraphStorage, ): text_units = [ split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP]) for dp in node_datas ] edges = await asyncio.gather( *[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas] ) all_one_hop_nodes = set() for this_edges in edges: if not this_edges: continue all_one_hop_nodes.update([e[1] for e in this_edges]) all_one_hop_nodes = list(all_one_hop_nodes) all_one_hop_nodes_data = await asyncio.gather( *[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes] ) # Add null check for node data all_one_hop_text_units_lookup = { k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP])) for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data) if v is not None and "source_id" in v # Add source_id check } all_text_units_lookup = {} for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)): for c_id in this_text_units: if c_id not in all_text_units_lookup: all_text_units_lookup[c_id] = { "data": await text_chunks_db.get_by_id(c_id), "order": index, "relation_counts": 0, } if this_edges: for e in this_edges: if ( e[1] in all_one_hop_text_units_lookup and c_id in all_one_hop_text_units_lookup[e[1]] ): all_text_units_lookup[c_id]["relation_counts"] += 1 # Filter out None values and ensure data has content all_text_units = [ {"id": k, **v} for k, v in all_text_units_lookup.items() if v is not None and v.get("data") is not None and "content" in v["data"] ] if not all_text_units: logger.warning("No valid text units found") return [] all_text_units = sorted( all_text_units, key=lambda x: (x["order"], -x["relation_counts"]) ) all_text_units = truncate_list_by_token_size( all_text_units, key=lambda x: x["data"]["content"], max_token_size=query_param.max_token_for_text_unit, ) all_text_units = [t["data"] for t in all_text_units] return all_text_units async def _find_most_related_edges_from_entities( node_datas: list[dict], query_param: QueryParam, knowledge_graph_inst: BaseGraphStorage, ): all_related_edges = await asyncio.gather( *[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas] ) all_edges = [] seen = set() for this_edges in all_related_edges: for e in this_edges: sorted_edge = tuple(sorted(e)) if sorted_edge not in seen: seen.add(sorted_edge) all_edges.append(sorted_edge) all_edges_pack = await asyncio.gather( *[knowledge_graph_inst.get_edge(e[0], e[1]) for e in all_edges] ) all_edges_degree = await asyncio.gather( *[knowledge_graph_inst.edge_degree(e[0], e[1]) for e in all_edges] ) all_edges_data = [ {"src_tgt": k, "rank": d, **v} for k, v, d in zip(all_edges, all_edges_pack, all_edges_degree) if v is not None ] all_edges_data = sorted( all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True ) all_edges_data = truncate_list_by_token_size( all_edges_data, key=lambda x: x["description"], max_token_size=query_param.max_token_for_global_context, ) return all_edges_data async def global_query( query, knowledge_graph_inst: BaseGraphStorage, entities_vdb: BaseVectorStorage, relationships_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, global_config: dict, ) -> str: context = None use_model_func = global_config["llm_model_func"] kw_prompt_temp = PROMPTS["keywords_extraction"] kw_prompt = kw_prompt_temp.format(query=query) result = await use_model_func(kw_prompt) json_text = locate_json_string_body_from_string(result) try: keywords_data = json.loads(json_text) keywords = keywords_data.get("high_level_keywords", []) keywords = ", ".join(keywords) except json.JSONDecodeError: try: result = ( result.replace(kw_prompt[:-1], "") .replace("user", "") .replace("model", "") .strip() ) result = "{" + result.split("{")[-1].split("}")[0] + "}" keywords_data = json.loads(result) keywords = keywords_data.get("high_level_keywords", []) keywords = ", ".join(keywords) except json.JSONDecodeError as e: # Handle parsing error print(f"JSON parsing error: {e}") return PROMPTS["fail_response"] if keywords: context = await _build_global_query_context( keywords, knowledge_graph_inst, entities_vdb, relationships_vdb, text_chunks_db, query_param, ) if query_param.only_need_context: return context if context is None: return PROMPTS["fail_response"] sys_prompt_temp = PROMPTS["rag_response"] sys_prompt = sys_prompt_temp.format( context_data=context, response_type=query_param.response_type ) response = await use_model_func( query, system_prompt=sys_prompt, ) if len(response) > len(sys_prompt): response = ( response.replace(sys_prompt, "") .replace("user", "") .replace("model", "") .replace(query, "") .replace("<system>", "") .replace("</system>", "") .strip() ) return response async def _build_global_query_context( keywords, knowledge_graph_inst: BaseGraphStorage, entities_vdb: BaseVectorStorage, relationships_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, ): results = await relationships_vdb.query(keywords, top_k=query_param.top_k) if not len(results): return None edge_datas = await asyncio.gather( *[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results] ) if not all([n is not None for n in edge_datas]): logger.warning("Some edges are missing, maybe the storage is damaged") edge_degree = await asyncio.gather( *[knowledge_graph_inst.edge_degree(r["src_id"], r["tgt_id"]) for r in results] ) edge_datas = [ {"src_id": k["src_id"], "tgt_id": k["tgt_id"], "rank": d, **v} for k, v, d in zip(results, edge_datas, edge_degree) if v is not None ] edge_datas = sorted( edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True ) edge_datas = truncate_list_by_token_size( edge_datas, key=lambda x: x["description"], max_token_size=query_param.max_token_for_global_context, ) use_entities = await _find_most_related_entities_from_relationships( edge_datas, query_param, knowledge_graph_inst ) use_text_units = await _find_related_text_unit_from_relationships( edge_datas, query_param, text_chunks_db, knowledge_graph_inst ) logger.info( f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units" ) relations_section_list = [ ["id", "source", "target", "description", "keywords", "weight", "rank"] ] for i, e in enumerate(edge_datas): relations_section_list.append( [ i, e["src_id"], e["tgt_id"], e["description"], e["keywords"], e["weight"], e["rank"], ] ) relations_context = list_of_list_to_csv(relations_section_list) entites_section_list = [["id", "entity", "type", "description", "rank"]] for i, n in enumerate(use_entities): entites_section_list.append( [ i, n["entity_name"], n.get("entity_type", "UNKNOWN"), n.get("description", "UNKNOWN"), n["rank"], ] ) entities_context = list_of_list_to_csv(entites_section_list) text_units_section_list = [["id", "content"]] for i, t in enumerate(use_text_units): text_units_section_list.append([i, t["content"]]) text_units_context = list_of_list_to_csv(text_units_section_list) return f""" -----Entities----- ```csv {entities_context} ``` -----Relationships----- ```csv {relations_context} ``` -----Sources----- ```csv {text_units_context} ``` """ async def _find_most_related_entities_from_relationships( edge_datas: list[dict], query_param: QueryParam, knowledge_graph_inst: BaseGraphStorage, ): entity_names = [] seen = set() for e in edge_datas: if e["src_id"] not in seen: entity_names.append(e["src_id"]) seen.add(e["src_id"]) if e["tgt_id"] not in seen: entity_names.append(e["tgt_id"]) seen.add(e["tgt_id"]) node_datas = await asyncio.gather( *[knowledge_graph_inst.get_node(entity_name) for entity_name in entity_names] ) node_degrees = await asyncio.gather( *[knowledge_graph_inst.node_degree(entity_name) for entity_name in entity_names] ) node_datas = [ {**n, "entity_name": k, "rank": d} for k, n, d in zip(entity_names, node_datas, node_degrees) ] node_datas = truncate_list_by_token_size( node_datas, key=lambda x: x["description"], max_token_size=query_param.max_token_for_local_context, ) return node_datas async def _find_related_text_unit_from_relationships( edge_datas: list[dict], query_param: QueryParam, text_chunks_db: BaseKVStorage[TextChunkSchema], knowledge_graph_inst: BaseGraphStorage, ): text_units = [ split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP]) for dp in edge_datas ] all_text_units_lookup = {} for index, unit_list in enumerate(text_units): for c_id in unit_list: if c_id not in all_text_units_lookup: all_text_units_lookup[c_id] = { "data": await text_chunks_db.get_by_id(c_id), "order": index, } if any([v is None for v in all_text_units_lookup.values()]): logger.warning("Text chunks are missing, maybe the storage is damaged") all_text_units = [ {"id": k, **v} for k, v in all_text_units_lookup.items() if v is not None ] all_text_units = sorted(all_text_units, key=lambda x: x["order"]) all_text_units = truncate_list_by_token_size( all_text_units, key=lambda x: x["data"]["content"], max_token_size=query_param.max_token_for_text_unit, ) all_text_units: list[TextChunkSchema] = [t["data"] for t in all_text_units] return all_text_units async def hybrid_query( query, knowledge_graph_inst: BaseGraphStorage, entities_vdb: BaseVectorStorage, relationships_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, global_config: dict, ) -> str: low_level_context = None high_level_context = None use_model_func = global_config["llm_model_func"] kw_prompt_temp = PROMPTS["keywords_extraction"] kw_prompt = kw_prompt_temp.format(query=query) result = await use_model_func(kw_prompt) json_text = locate_json_string_body_from_string(result) try: keywords_data = json.loads(json_text) hl_keywords = keywords_data.get("high_level_keywords", []) ll_keywords = keywords_data.get("low_level_keywords", []) hl_keywords = ", ".join(hl_keywords) ll_keywords = ", ".join(ll_keywords) except json.JSONDecodeError: try: result = ( result.replace(kw_prompt[:-1], "") .replace("user", "") .replace("model", "") .strip() ) result = "{" + result.split("{")[-1].split("}")[0] + "}" keywords_data = json.loads(result) hl_keywords = keywords_data.get("high_level_keywords", []) ll_keywords = keywords_data.get("low_level_keywords", []) hl_keywords = ", ".join(hl_keywords) ll_keywords = ", ".join(ll_keywords) # Handle parsing error except json.JSONDecodeError as e: print(f"JSON parsing error: {e}") return PROMPTS["fail_response"] if ll_keywords: low_level_context = await _build_local_query_context( ll_keywords, knowledge_graph_inst, entities_vdb, text_chunks_db, query_param, ) if hl_keywords: high_level_context = await _build_global_query_context( hl_keywords, knowledge_graph_inst, entities_vdb, relationships_vdb, text_chunks_db, query_param, ) context = combine_contexts(high_level_context, low_level_context) if query_param.only_need_context: return context if context is None: return PROMPTS["fail_response"] sys_prompt_temp = PROMPTS["rag_response"] sys_prompt = sys_prompt_temp.format( context_data=context, response_type=query_param.response_type ) response = await use_model_func( query, system_prompt=sys_prompt, ) if len(response) > len(sys_prompt): response = ( response.replace(sys_prompt, "") .replace("user", "") .replace("model", "") .replace(query, "") .replace("<system>", "") .replace("</system>", "") .strip() ) return response def combine_contexts(high_level_context, low_level_context): # Function to extract entities, relationships, and sources from context strings def extract_sections(context): entities_match = re.search( r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL ) relationships_match = re.search( r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL ) sources_match = re.search( r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL ) entities = entities_match.group(1) if entities_match else "" relationships = relationships_match.group(1) if relationships_match else "" sources = sources_match.group(1) if sources_match else "" return entities, relationships, sources # Extract sections from both contexts if high_level_context is None: warnings.warn( "High Level context is None. Return empty High entity/relationship/source" ) hl_entities, hl_relationships, hl_sources = "", "", "" else: hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context) if low_level_context is None: warnings.warn( "Low Level context is None. Return empty Low entity/relationship/source" ) ll_entities, ll_relationships, ll_sources = "", "", "" else: ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context) # Combine and deduplicate the entities combined_entities = process_combine_contexts(hl_entities, ll_entities) # Combine and deduplicate the relationships combined_relationships = process_combine_contexts( hl_relationships, ll_relationships ) # Combine and deduplicate the sources combined_sources = process_combine_contexts(hl_sources, ll_sources) # Format the combined context return f""" -----Entities----- ```csv {combined_entities} ``` -----Relationships----- ```csv {combined_relationships} ``` -----Sources----- ```csv {combined_sources} ``` """ async def naive_query( query, chunks_vdb: BaseVectorStorage, text_chunks_db: BaseKVStorage[TextChunkSchema], query_param: QueryParam, global_config: dict, ): use_model_func = global_config["llm_model_func"] results = await chunks_vdb.query(query, top_k=query_param.top_k) if not len(results): return PROMPTS["fail_response"] chunks_ids = [r["id"] for r in results] chunks = await text_chunks_db.get_by_ids(chunks_ids) maybe_trun_chunks = truncate_list_by_token_size( chunks, key=lambda x: x["content"], max_token_size=query_param.max_token_for_text_unit, ) logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks") section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks]) if query_param.only_need_context: return section sys_prompt_temp = PROMPTS["naive_rag_response"] sys_prompt = sys_prompt_temp.format( content_data=section, response_type=query_param.response_type ) response = await use_model_func( query, system_prompt=sys_prompt, ) if len(response) > len(sys_prompt): response = ( response[len(sys_prompt) :] .replace(sys_prompt, "") .replace("user", "") .replace("model", "") .replace(query, "") .replace("<system>", "") .replace("</system>", "") .strip() ) return response