import os import asyncio from lightrag import LightRAG, QueryParam from lightrag.utils import EmbeddingFunc import numpy as np from dotenv import load_dotenv import logging from openai import AzureOpenAI logging.basicConfig(level=logging.INFO) load_dotenv() AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION") AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT") AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT") AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION") WORKING_DIR = "./dickens" if os.path.exists(WORKING_DIR): import shutil shutil.rmtree(WORKING_DIR) os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: client = AzureOpenAI( api_key=AZURE_OPENAI_API_KEY, api_version=AZURE_OPENAI_API_VERSION, azure_endpoint=AZURE_OPENAI_ENDPOINT, ) messages = [] if system_prompt: messages.append({"role": "system", "content": system_prompt}) if history_messages: messages.extend(history_messages) messages.append({"role": "user", "content": prompt}) chat_completion = client.chat.completions.create( model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name". messages=messages, temperature=kwargs.get("temperature", 0), top_p=kwargs.get("top_p", 1), n=kwargs.get("n", 1), ) return chat_completion.choices[0].message.content async def embedding_func(texts: list[str]) -> np.ndarray: client = AzureOpenAI( api_key=AZURE_OPENAI_API_KEY, api_version=AZURE_EMBEDDING_API_VERSION, azure_endpoint=AZURE_OPENAI_ENDPOINT, ) embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts) embeddings = [item.embedding for item in embedding.data] return np.array(embeddings) async def test_funcs(): result = await llm_model_func("How are you?") print("Resposta do llm_model_func: ", result) result = await embedding_func(["How are you?"]) print("Resultado do embedding_func: ", result.shape) print("Dimensão da embedding: ", result.shape[1]) asyncio.run(test_funcs()) embedding_dimension = 3072 rag = LightRAG( working_dir=WORKING_DIR, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=embedding_dimension, max_token_size=8192, func=embedding_func, ), ) book1 = open("./book_1.txt", encoding="utf-8") book2 = open("./book_2.txt", encoding="utf-8") rag.insert([book1.read(), book2.read()]) query_text = "What are the main themes?" print("Result (Naive):") print(rag.query(query_text, param=QueryParam(mode="naive"))) print("\nResult (Local):") print(rag.query(query_text, param=QueryParam(mode="local"))) print("\nResult (Global):") print(rag.query(query_text, param=QueryParam(mode="global"))) print("\nResult (Hybrid):") print(rag.query(query_text, param=QueryParam(mode="hybrid")))