from fastapi import FastAPI, HTTPException, File, UploadFile from contextlib import asynccontextmanager from pydantic import BaseModel from typing import Optional import sys import os from pathlib import Path import asyncio import nest_asyncio from lightrag import LightRAG, QueryParam from lightrag.llm import openai_complete_if_cache, openai_embedding from lightrag.utils import EmbeddingFunc import numpy as np from lightrag.kg.oracle_impl import OracleDB print(os.getcwd()) script_directory = Path(__file__).resolve().parent.parent sys.path.append(os.path.abspath(script_directory)) # Apply nest_asyncio to solve event loop issues nest_asyncio.apply() DEFAULT_RAG_DIR = "index_default" # We use OpenAI compatible API to call LLM on Oracle Cloud # More docs here https://github.com/jin38324/OCI_GenAI_access_gateway BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/" APIKEY = "ocigenerativeai" # Configure working directory WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") print(f"WORKING_DIR: {WORKING_DIR}") LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus") print(f"LLM_MODEL: {LLM_MODEL}") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0") print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512)) print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") if not os.path.exists(WORKING_DIR): os.mkdir(WORKING_DIR) async def llm_model_func( prompt, system_prompt=None, history_messages=[], **kwargs ) -> str: return await openai_complete_if_cache( LLM_MODEL, prompt, system_prompt=system_prompt, history_messages=history_messages, api_key=APIKEY, base_url=BASE_URL, **kwargs, ) async def embedding_func(texts: list[str]) -> np.ndarray: return await openai_embedding( texts, model=EMBEDDING_MODEL, api_key=APIKEY, base_url=BASE_URL, ) async def get_embedding_dim(): test_text = ["This is a test sentence."] embedding = await embedding_func(test_text) embedding_dim = embedding.shape[1] return embedding_dim async def init(): # Detect embedding dimension embedding_dimension = await get_embedding_dim() print(f"Detected embedding dimension: {embedding_dimension}") # Create Oracle DB connection # The `config` parameter is the connection configuration of Oracle DB # More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html # We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query # Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud oracle_db = OracleDB( config={ "user": "", "password": "", "dsn": "", "config_dir": "", "wallet_location": "", "wallet_password": "", "workspace": "", } # specify which docs you want to store and query ) # Check if Oracle DB tables exist, if not, tables will be created await oracle_db.check_tables() # Initialize LightRAG # We use Oracle DB as the KV/vector/graph storage rag = LightRAG( enable_llm_cache=False, working_dir=WORKING_DIR, chunk_token_size=512, llm_model_func=llm_model_func, embedding_func=EmbeddingFunc( embedding_dim=embedding_dimension, max_token_size=512, func=embedding_func, ), graph_storage="OracleGraphStorage", kv_storage="OracleKVStorage", vector_storage="OracleVectorDBStorage", ) # Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool rag.graph_storage_cls.db = oracle_db rag.key_string_value_json_storage_cls.db = oracle_db rag.vector_db_storage_cls.db = oracle_db return rag # Data models class QueryRequest(BaseModel): query: str mode: str = "hybrid" only_need_context: bool = False class InsertRequest(BaseModel): text: str class Response(BaseModel): status: str data: Optional[str] = None message: Optional[str] = None # API routes rag = None @asynccontextmanager async def lifespan(app: FastAPI): global rag rag = await init() print("done!") yield app = FastAPI( title="LightRAG API", description="API for RAG operations", lifespan=lifespan ) @app.post("/query", response_model=Response) async def query_endpoint(request: QueryRequest): try: # loop = asyncio.get_event_loop() result = await rag.aquery( request.query, param=QueryParam( mode=request.mode, only_need_context=request.only_need_context ), ) return Response(status="success", data=result) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert", response_model=Response) async def insert_endpoint(request: InsertRequest): try: loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(request.text)) return Response(status="success", message="Text inserted successfully") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/insert_file", response_model=Response) async def insert_file(file: UploadFile = File(...)): try: file_content = await file.read() # Read file content try: content = file_content.decode("utf-8") except UnicodeDecodeError: # If UTF-8 decoding fails, try other encodings content = file_content.decode("gbk") # Insert file content loop = asyncio.get_event_loop() await loop.run_in_executor(None, lambda: rag.insert(content)) return Response( status="success", message=f"File content from {file.filename} inserted successfully", ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): return {"status": "healthy"} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8020) # Usage example # To run the server, use the following command in your terminal: # python lightrag_api_openai_compatible_demo.py # Example requests: # 1. Query: # curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}' # 2. Insert text: # curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}' # 3. Insert file: # curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}' # 4. Health check: # curl -X GET "http://127.0.0.1:8020/health"