import os | |
from lightrag import LightRAG, QueryParam | |
from lightrag.llm import gpt_4o_mini_complete | |
######### | |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert() | |
# import nest_asyncio | |
# nest_asyncio.apply() | |
######### | |
WORKING_DIR = "./local_neo4jWorkDir" | |
if not os.path.exists(WORKING_DIR): | |
os.mkdir(WORKING_DIR) | |
rag = LightRAG( | |
working_dir=WORKING_DIR, | |
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model | |
kg="Neo4JStorage", | |
log_level="INFO", | |
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model | |
) | |
with open("./book.txt") as f: | |
rag.insert(f.read()) | |
# Perform naive search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) | |
) | |
# Perform local search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) | |
) | |
# Perform global search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) | |
) | |
# Perform hybrid search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) | |
) | |