|
import os |
|
import json |
|
import time |
|
import numpy as np |
|
|
|
from lightrag import LightRAG |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.llm import openai_complete_if_cache, openai_embedding |
|
|
|
|
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"solar-mini", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=os.getenv("UPSTAGE_API_KEY"), |
|
base_url="https://api.upstage.ai/v1/solar", |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embedding( |
|
texts, |
|
model="solar-embedding-1-large-query", |
|
api_key=os.getenv("UPSTAGE_API_KEY"), |
|
base_url="https://api.upstage.ai/v1/solar", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def insert_text(rag, file_path): |
|
with open(file_path, mode="r") as f: |
|
unique_contexts = json.load(f) |
|
|
|
retries = 0 |
|
max_retries = 3 |
|
while retries < max_retries: |
|
try: |
|
rag.insert(unique_contexts) |
|
break |
|
except Exception as e: |
|
retries += 1 |
|
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}") |
|
time.sleep(10) |
|
if retries == max_retries: |
|
print("Insertion failed after exceeding the maximum number of retries") |
|
|
|
|
|
cls = "mix" |
|
WORKING_DIR = f"../{cls}" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=4096, max_token_size=8192, func=embedding_func |
|
), |
|
) |
|
|
|
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json") |
|
|