|
import os |
|
import copy |
|
from functools import lru_cache |
|
import json |
|
import aioboto3 |
|
import aiohttp |
|
import numpy as np |
|
import ollama |
|
|
|
from openai import ( |
|
AsyncOpenAI, |
|
APIConnectionError, |
|
RateLimitError, |
|
Timeout, |
|
AsyncAzureOpenAI, |
|
) |
|
|
|
import base64 |
|
import struct |
|
|
|
from tenacity import ( |
|
retry, |
|
stop_after_attempt, |
|
wait_exponential, |
|
retry_if_exception_type, |
|
) |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
from pydantic import BaseModel, Field |
|
from typing import List, Dict, Callable, Any |
|
from .base import BaseKVStorage |
|
from .utils import compute_args_hash, wrap_embedding_func_with_attrs |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
|
|
@retry( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=4, max=10), |
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), |
|
) |
|
async def openai_complete_if_cache( |
|
model, |
|
prompt, |
|
system_prompt=None, |
|
history_messages=[], |
|
base_url=None, |
|
api_key=None, |
|
**kwargs, |
|
) -> str: |
|
if api_key: |
|
os.environ["OPENAI_API_KEY"] = api_key |
|
|
|
openai_async_client = ( |
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) |
|
) |
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
|
|
response = await openai_async_client.chat.completions.create( |
|
model=model, messages=messages, **kwargs |
|
) |
|
|
|
if hashing_kv is not None: |
|
await hashing_kv.upsert( |
|
{args_hash: {"return": response.choices[0].message.content, "model": model}} |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
@retry( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=4, max=10), |
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), |
|
) |
|
async def azure_openai_complete_if_cache( |
|
model, |
|
prompt, |
|
system_prompt=None, |
|
history_messages=[], |
|
base_url=None, |
|
api_key=None, |
|
**kwargs, |
|
): |
|
if api_key: |
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key |
|
if base_url: |
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url |
|
|
|
openai_async_client = AsyncAzureOpenAI( |
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), |
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"), |
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"), |
|
) |
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
messages.extend(history_messages) |
|
if prompt is not None: |
|
messages.append({"role": "user", "content": prompt}) |
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
|
|
response = await openai_async_client.chat.completions.create( |
|
model=model, messages=messages, **kwargs |
|
) |
|
|
|
if hashing_kv is not None: |
|
await hashing_kv.upsert( |
|
{args_hash: {"return": response.choices[0].message.content, "model": model}} |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
class BedrockError(Exception): |
|
"""Generic error for issues related to Amazon Bedrock""" |
|
|
|
|
|
@retry( |
|
stop=stop_after_attempt(5), |
|
wait=wait_exponential(multiplier=1, max=60), |
|
retry=retry_if_exception_type((BedrockError)), |
|
) |
|
async def bedrock_complete_if_cache( |
|
model, |
|
prompt, |
|
system_prompt=None, |
|
history_messages=[], |
|
aws_access_key_id=None, |
|
aws_secret_access_key=None, |
|
aws_session_token=None, |
|
**kwargs, |
|
) -> str: |
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( |
|
"AWS_ACCESS_KEY_ID", aws_access_key_id |
|
) |
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( |
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key |
|
) |
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get( |
|
"AWS_SESSION_TOKEN", aws_session_token |
|
) |
|
|
|
|
|
messages = [] |
|
for history_message in history_messages: |
|
message = copy.copy(history_message) |
|
message["content"] = [{"text": message["content"]}] |
|
messages.append(message) |
|
|
|
|
|
messages.append({"role": "user", "content": [{"text": prompt}]}) |
|
|
|
|
|
args = {"modelId": model, "messages": messages} |
|
|
|
|
|
if system_prompt: |
|
args["system"] = [{"text": system_prompt}] |
|
|
|
|
|
inference_params_map = { |
|
"max_tokens": "maxTokens", |
|
"top_p": "topP", |
|
"stop_sequences": "stopSequences", |
|
} |
|
if inference_params := list( |
|
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"]) |
|
): |
|
args["inferenceConfig"] = {} |
|
for param in inference_params: |
|
args["inferenceConfig"][inference_params_map.get(param, param)] = ( |
|
kwargs.pop(param) |
|
) |
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
|
|
|
|
session = aioboto3.Session() |
|
async with session.client("bedrock-runtime") as bedrock_async_client: |
|
try: |
|
response = await bedrock_async_client.converse(**args, **kwargs) |
|
except Exception as e: |
|
raise BedrockError(e) |
|
|
|
if hashing_kv is not None: |
|
await hashing_kv.upsert( |
|
{ |
|
args_hash: { |
|
"return": response["output"]["message"]["content"][0]["text"], |
|
"model": model, |
|
} |
|
} |
|
) |
|
|
|
return response["output"]["message"]["content"][0]["text"] |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def initialize_hf_model(model_name): |
|
hf_tokenizer = AutoTokenizer.from_pretrained( |
|
model_name, device_map="auto", trust_remote_code=True |
|
) |
|
hf_model = AutoModelForCausalLM.from_pretrained( |
|
model_name, device_map="auto", trust_remote_code=True |
|
) |
|
if hf_tokenizer.pad_token is None: |
|
hf_tokenizer.pad_token = hf_tokenizer.eos_token |
|
|
|
return hf_model, hf_tokenizer |
|
|
|
|
|
async def hf_model_if_cache( |
|
model, prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
model_name = model |
|
hf_model, hf_tokenizer = initialize_hf_model(model_name) |
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
input_prompt = "" |
|
try: |
|
input_prompt = hf_tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
except Exception: |
|
try: |
|
ori_message = copy.deepcopy(messages) |
|
if messages[0]["role"] == "system": |
|
messages[1]["content"] = ( |
|
"<system>" |
|
+ messages[0]["content"] |
|
+ "</system>\n" |
|
+ messages[1]["content"] |
|
) |
|
messages = messages[1:] |
|
input_prompt = hf_tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
except Exception: |
|
len_message = len(ori_message) |
|
for msgid in range(len_message): |
|
input_prompt = ( |
|
input_prompt |
|
+ "<" |
|
+ ori_message[msgid]["role"] |
|
+ ">" |
|
+ ori_message[msgid]["content"] |
|
+ "</" |
|
+ ori_message[msgid]["role"] |
|
+ ">\n" |
|
) |
|
|
|
input_ids = hf_tokenizer( |
|
input_prompt, return_tensors="pt", padding=True, truncation=True |
|
).to("cuda") |
|
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()} |
|
output = hf_model.generate( |
|
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True |
|
) |
|
response_text = hf_tokenizer.decode( |
|
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True |
|
) |
|
if hashing_kv is not None: |
|
await hashing_kv.upsert({args_hash: {"return": response_text, "model": model}}) |
|
return response_text |
|
|
|
|
|
async def ollama_model_if_cache( |
|
model, prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
kwargs.pop("max_tokens", None) |
|
kwargs.pop("response_format", None) |
|
host = kwargs.pop("host", None) |
|
timeout = kwargs.pop("timeout", None) |
|
|
|
ollama_client = ollama.AsyncClient(host=host, timeout=timeout) |
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
|
|
response = await ollama_client.chat(model=model, messages=messages, **kwargs) |
|
|
|
result = response["message"]["content"] |
|
|
|
if hashing_kv is not None: |
|
await hashing_kv.upsert({args_hash: {"return": result, "model": model}}) |
|
|
|
return result |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def initialize_lmdeploy_pipeline( |
|
model, |
|
tp=1, |
|
chat_template=None, |
|
log_level="WARNING", |
|
model_format="hf", |
|
quant_policy=0, |
|
): |
|
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig |
|
|
|
lmdeploy_pipe = pipeline( |
|
model_path=model, |
|
backend_config=TurbomindEngineConfig( |
|
tp=tp, model_format=model_format, quant_policy=quant_policy |
|
), |
|
chat_template_config=ChatTemplateConfig(model_name=chat_template) |
|
if chat_template |
|
else None, |
|
log_level="WARNING", |
|
) |
|
return lmdeploy_pipe |
|
|
|
|
|
async def lmdeploy_model_if_cache( |
|
model, |
|
prompt, |
|
system_prompt=None, |
|
history_messages=[], |
|
chat_template=None, |
|
model_format="hf", |
|
quant_policy=0, |
|
**kwargs, |
|
) -> str: |
|
""" |
|
Args: |
|
model (str): The path to the model. |
|
It could be one of the following options: |
|
- i) A local directory path of a turbomind model which is |
|
converted by `lmdeploy convert` command or download |
|
from ii) and iii). |
|
- ii) The model_id of a lmdeploy-quantized model hosted |
|
inside a model repo on huggingface.co, such as |
|
"InternLM/internlm-chat-20b-4bit", |
|
"lmdeploy/llama2-chat-70b-4bit", etc. |
|
- iii) The model_id of a model hosted inside a model repo |
|
on huggingface.co, such as "internlm/internlm-chat-7b", |
|
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" |
|
and so on. |
|
chat_template (str): needed when model is a pytorch model on |
|
huggingface.co, such as "internlm-chat-7b", |
|
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on, |
|
and when the model name of local path did not match the original model name in HF. |
|
tp (int): tensor parallel |
|
prompt (Union[str, List[str]]): input texts to be completed. |
|
do_preprocess (bool): whether pre-process the messages. Default to |
|
True, which means chat_template will be applied. |
|
skip_special_tokens (bool): Whether or not to remove special tokens |
|
in the decoding. Default to be True. |
|
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise. |
|
Default to be False, which means greedy decoding will be applied. |
|
""" |
|
try: |
|
import lmdeploy |
|
from lmdeploy import version_info, GenerationConfig |
|
except Exception: |
|
raise ImportError("Please install lmdeploy before intialize lmdeploy backend.") |
|
|
|
kwargs.pop("response_format", None) |
|
max_new_tokens = kwargs.pop("max_tokens", 512) |
|
tp = kwargs.pop("tp", 1) |
|
skip_special_tokens = kwargs.pop("skip_special_tokens", True) |
|
do_preprocess = kwargs.pop("do_preprocess", True) |
|
do_sample = kwargs.pop("do_sample", False) |
|
gen_params = kwargs |
|
|
|
version = version_info |
|
if do_sample is not None and version < (0, 6, 0): |
|
raise RuntimeError( |
|
"`do_sample` parameter is not supported by lmdeploy until " |
|
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}" |
|
) |
|
else: |
|
do_sample = True |
|
gen_params.update(do_sample=do_sample) |
|
|
|
lmdeploy_pipe = initialize_lmdeploy_pipeline( |
|
model=model, |
|
tp=tp, |
|
chat_template=chat_template, |
|
model_format=model_format, |
|
quant_policy=quant_policy, |
|
log_level="WARNING", |
|
) |
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
|
|
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
if hashing_kv is not None: |
|
args_hash = compute_args_hash(model, messages) |
|
if_cache_return = await hashing_kv.get_by_id(args_hash) |
|
if if_cache_return is not None: |
|
return if_cache_return["return"] |
|
|
|
gen_config = GenerationConfig( |
|
skip_special_tokens=skip_special_tokens, |
|
max_new_tokens=max_new_tokens, |
|
**gen_params, |
|
) |
|
|
|
response = "" |
|
async for res in lmdeploy_pipe.generate( |
|
messages, |
|
gen_config=gen_config, |
|
do_preprocess=do_preprocess, |
|
stream_response=False, |
|
session_id=1, |
|
): |
|
response += res.response |
|
|
|
if hashing_kv is not None: |
|
await hashing_kv.upsert({args_hash: {"return": response, "model": model}}) |
|
return response |
|
|
|
|
|
async def gpt_4o_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"gpt-4o", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def gpt_4o_mini_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"gpt-4o-mini", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def azure_openai_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await azure_openai_complete_if_cache( |
|
"conversation-4o-mini", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def bedrock_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await bedrock_complete_if_cache( |
|
"anthropic.claude-3-haiku-20240307-v1:0", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def hf_model_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"] |
|
return await hf_model_if_cache( |
|
model_name, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def ollama_model_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
model_name = kwargs["hashing_kv"].global_config["llm_model_name"] |
|
return await ollama_model_if_cache( |
|
model_name, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
) |
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) |
|
@retry( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=4, max=60), |
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), |
|
) |
|
async def openai_embedding( |
|
texts: list[str], |
|
model: str = "text-embedding-3-small", |
|
base_url: str = None, |
|
api_key: str = None, |
|
) -> np.ndarray: |
|
if api_key: |
|
os.environ["OPENAI_API_KEY"] = api_key |
|
|
|
openai_async_client = ( |
|
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url) |
|
) |
|
response = await openai_async_client.embeddings.create( |
|
model=model, input=texts, encoding_format="float" |
|
) |
|
return np.array([dp.embedding for dp in response.data]) |
|
|
|
|
|
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192) |
|
@retry( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=4, max=10), |
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), |
|
) |
|
async def azure_openai_embedding( |
|
texts: list[str], |
|
model: str = "text-embedding-3-small", |
|
base_url: str = None, |
|
api_key: str = None, |
|
) -> np.ndarray: |
|
if api_key: |
|
os.environ["AZURE_OPENAI_API_KEY"] = api_key |
|
if base_url: |
|
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url |
|
|
|
openai_async_client = AsyncAzureOpenAI( |
|
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), |
|
api_key=os.getenv("AZURE_OPENAI_API_KEY"), |
|
api_version=os.getenv("AZURE_OPENAI_API_VERSION"), |
|
) |
|
|
|
response = await openai_async_client.embeddings.create( |
|
model=model, input=texts, encoding_format="float" |
|
) |
|
return np.array([dp.embedding for dp in response.data]) |
|
|
|
|
|
@retry( |
|
stop=stop_after_attempt(3), |
|
wait=wait_exponential(multiplier=1, min=4, max=60), |
|
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), |
|
) |
|
async def siliconcloud_embedding( |
|
texts: list[str], |
|
model: str = "netease-youdao/bce-embedding-base_v1", |
|
base_url: str = "https://api.siliconflow.cn/v1/embeddings", |
|
max_token_size: int = 512, |
|
api_key: str = None, |
|
) -> np.ndarray: |
|
if api_key and not api_key.startswith("Bearer "): |
|
api_key = "Bearer " + api_key |
|
|
|
headers = {"Authorization": api_key, "Content-Type": "application/json"} |
|
|
|
truncate_texts = [text[0:max_token_size] for text in texts] |
|
|
|
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"} |
|
|
|
base64_strings = [] |
|
async with aiohttp.ClientSession() as session: |
|
async with session.post(base_url, headers=headers, json=payload) as response: |
|
content = await response.json() |
|
if "code" in content: |
|
raise ValueError(content) |
|
base64_strings = [item["embedding"] for item in content["data"]] |
|
|
|
embeddings = [] |
|
for string in base64_strings: |
|
decode_bytes = base64.b64decode(string) |
|
n = len(decode_bytes) // 4 |
|
float_array = struct.unpack("<" + "f" * n, decode_bytes) |
|
embeddings.append(float_array) |
|
return np.array(embeddings) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def bedrock_embedding( |
|
texts: list[str], |
|
model: str = "amazon.titan-embed-text-v2:0", |
|
aws_access_key_id=None, |
|
aws_secret_access_key=None, |
|
aws_session_token=None, |
|
) -> np.ndarray: |
|
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get( |
|
"AWS_ACCESS_KEY_ID", aws_access_key_id |
|
) |
|
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get( |
|
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key |
|
) |
|
os.environ["AWS_SESSION_TOKEN"] = os.environ.get( |
|
"AWS_SESSION_TOKEN", aws_session_token |
|
) |
|
|
|
session = aioboto3.Session() |
|
async with session.client("bedrock-runtime") as bedrock_async_client: |
|
if (model_provider := model.split(".")[0]) == "amazon": |
|
embed_texts = [] |
|
for text in texts: |
|
if "v2" in model: |
|
body = json.dumps( |
|
{ |
|
"inputText": text, |
|
|
|
"embeddingTypes": ["float"], |
|
} |
|
) |
|
elif "v1" in model: |
|
body = json.dumps({"inputText": text}) |
|
else: |
|
raise ValueError(f"Model {model} is not supported!") |
|
|
|
response = await bedrock_async_client.invoke_model( |
|
modelId=model, |
|
body=body, |
|
accept="application/json", |
|
contentType="application/json", |
|
) |
|
|
|
response_body = await response.get("body").json() |
|
|
|
embed_texts.append(response_body["embedding"]) |
|
elif model_provider == "cohere": |
|
body = json.dumps( |
|
{"texts": texts, "input_type": "search_document", "truncate": "NONE"} |
|
) |
|
|
|
response = await bedrock_async_client.invoke_model( |
|
model=model, |
|
body=body, |
|
accept="application/json", |
|
contentType="application/json", |
|
) |
|
|
|
response_body = json.loads(response.get("body").read()) |
|
|
|
embed_texts = response_body["embeddings"] |
|
else: |
|
raise ValueError(f"Model provider '{model_provider}' is not supported!") |
|
|
|
return np.array(embed_texts) |
|
|
|
|
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray: |
|
device = next(embed_model.parameters()).device |
|
input_ids = tokenizer( |
|
texts, return_tensors="pt", padding=True, truncation=True |
|
).input_ids.to(device) |
|
with torch.no_grad(): |
|
outputs = embed_model(input_ids) |
|
embeddings = outputs.last_hidden_state.mean(dim=1) |
|
if embeddings.dtype == torch.bfloat16: |
|
return embeddings.detach().to(torch.float32).cpu().numpy() |
|
else: |
|
return embeddings.detach().cpu().numpy() |
|
|
|
|
|
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray: |
|
embed_text = [] |
|
ollama_client = ollama.Client(**kwargs) |
|
for text in texts: |
|
data = ollama_client.embeddings(model=embed_model, prompt=text) |
|
embed_text.append(data["embedding"]) |
|
|
|
return embed_text |
|
|
|
|
|
class Model(BaseModel): |
|
""" |
|
This is a Pydantic model class named 'Model' that is used to define a custom language model. |
|
|
|
Attributes: |
|
gen_func (Callable[[Any], str]): A callable function that generates the response from the language model. |
|
The function should take any argument and return a string. |
|
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function. |
|
This could include parameters such as the model name, API key, etc. |
|
|
|
Example usage: |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}) |
|
|
|
In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model. |
|
The 'kwargs' dictionary contains the model name and API key to be passed to the function. |
|
""" |
|
|
|
gen_func: Callable[[Any], str] = Field( |
|
..., |
|
description="A function that generates the response from the llm. The response must be a string", |
|
) |
|
kwargs: Dict[str, Any] = Field( |
|
..., |
|
description="The arguments to pass to the callable function. Eg. the api key, model name, etc", |
|
) |
|
|
|
class Config: |
|
arbitrary_types_allowed = True |
|
|
|
|
|
class MultiModel: |
|
""" |
|
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier. |
|
Could also be used for spliting across diffrent models or providers. |
|
|
|
Attributes: |
|
models (List[Model]): A list of language models to be used. |
|
|
|
Usage example: |
|
```python |
|
models = [ |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}), |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}), |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}), |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}), |
|
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}), |
|
] |
|
multi_model = MultiModel(models) |
|
rag = LightRAG( |
|
llm_model_func=multi_model.llm_model_func |
|
/ ..other args |
|
) |
|
``` |
|
""" |
|
|
|
def __init__(self, models: List[Model]): |
|
self._models = models |
|
self._current_model = 0 |
|
|
|
def _next_model(self): |
|
self._current_model = (self._current_model + 1) % len(self._models) |
|
return self._models[self._current_model] |
|
|
|
async def llm_model_func( |
|
self, prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
kwargs.pop("model", None) |
|
next_model = self._next_model() |
|
args = dict( |
|
prompt=prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
**kwargs, |
|
**next_model.kwargs, |
|
) |
|
|
|
return await next_model.gen_func(**args) |
|
|
|
|
|
if __name__ == "__main__": |
|
import asyncio |
|
|
|
async def main(): |
|
result = await gpt_4o_mini_complete("How are you?") |
|
print(result) |
|
|
|
asyncio.run(main()) |
|
|