|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"Qwen/Qwen2.5-7B-Instruct", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=os.getenv("SILICONFLOW_API_KEY"), |
|
base_url="https://api.siliconflow.cn/v1/", |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await siliconcloud_embedding( |
|
texts, |
|
model="netease-youdao/bce-embedding-base_v1", |
|
api_key=os.getenv("SILICONFLOW_API_KEY"), |
|
max_token_size=512, |
|
) |
|
|
|
|
|
|
|
async def test_funcs(): |
|
result = await llm_model_func("How are you?") |
|
print("llm_model_func: ", result) |
|
|
|
result = await embedding_func(["How are you?"]) |
|
print("embedding_func: ", result) |
|
|
|
|
|
asyncio.run(test_funcs()) |
|
|
|
|
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=768, max_token_size=512, func=embedding_func |
|
), |
|
) |
|
|
|
|
|
with open("./book.txt") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) |
|
) |
|
|