File size: 35,416 Bytes
f7ab812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
Metadata-Version: 2.1
Name: lightrag-hku
Version: 1.0.1
Summary: LightRAG: Simple and Fast Retrieval-Augmented Generation
Home-page: https://github.com/HKUDS/LightRAG
Author: ZiruiGuo
Project-URL: Documentation, https://github.com/HKUDS/LightRAG
Project-URL: Source, https://github.com/HKUDS/LightRAG
Project-URL: Tracker, https://github.com/HKUDS/LightRAG/issues
Classifier: Development Status :: 4 - Beta
Classifier: Programming Language :: Python :: 3
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: Developers
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: accelerate
Requires-Dist: aioboto3
Requires-Dist: aiohttp
Requires-Dist: graspologic
Requires-Dist: hnswlib
Requires-Dist: nano-vectordb
Requires-Dist: neo4j
Requires-Dist: networkx
Requires-Dist: ollama
Requires-Dist: openai
Requires-Dist: oracledb
Requires-Dist: pyvis
Requires-Dist: tenacity
Requires-Dist: tiktoken
Requires-Dist: torch
Requires-Dist: transformers
Requires-Dist: xxhash
<center><h2>π LightRAG: Simple and Fast Retrieval-Augmented Generation</h2></center>

<div align='center'>
<p>
<a href='https://lightrag.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='https://youtu.be/oageL-1I0GE'><img src='https://badges.aleen42.com/src/youtube.svg'></a>
<a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
<a href='https://learnopencv.com/lightrag'><img src='https://img.shields.io/badge/LearnOpenCV-blue'></a>
</p>
<p>
<img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
<img src="https://img.shields.io/badge/python->=3.9.11-blue">
<a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
<a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
</p>
<p>
<a href='https://discord.gg/yF2MmDJyGJ'><img src='https://discordapp.com/api/guilds/1296348098003734629/widget.png?style=shield'></a>
<a href='https://github.com/HKUDS/LightRAG/issues/285'><img src='https://img.shields.io/badge/ηΎ€θ-wechat-green'></a>
</p>
This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag).

</div>
## π News
- [x] [2024.11.19]π―π’A comprehensive guide to LightRAG is now available on [LearnOpenCV](https://learnopencv.com/lightrag). Many thanks to the blog author!
- [x] [2024.11.12]π―π’LightRAG now supports [Oracle Database 23ai for all storage types (KV, vector, and graph)](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_oracle_demo.py).
- [x] [2024.11.11]π―π’LightRAG now supports [deleting entities by their names](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#delete-entity).
- [x] [2024.11.09]π―π’Introducing the [LightRAG Gui](https://lightrag-gui.streamlit.app), which allows you to insert, query, visualize, and download LightRAG knowledge.
- [x] [2024.11.04]π―π’You can now [use Neo4J for Storage](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#using-neo4j-for-storage).
- [x] [2024.10.29]π―π’LightRAG now supports multiple file types, including PDF, DOC, PPT, and CSV via `textract`.
- [x] [2024.10.20]π―π’Weβve added a new feature to LightRAG: Graph Visualization.
- [x] [2024.10.18]π―π’Weβve added a link to a [LightRAG Introduction Video](https://youtu.be/oageL-1I0GE). Thanks to the author!
- [x] [2024.10.17]π―π’We have created a [Discord channel](https://discord.gg/yF2MmDJyGJ)! Welcome to join for sharing and discussions! ππ
- [x] [2024.10.16]π―π’LightRAG now supports [Ollama models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
- [x] [2024.10.15]π―π’LightRAG now supports [Hugging Face models](https://github.com/HKUDS/LightRAG?tab=readme-ov-file#quick-start)!
## Algorithm Flowchart

*Figure 1: LightRAG Indexing Flowchart*

*Figure 2: LightRAG Retrieval and Querying Flowchart*
## Install
* Install from source (Recommend)
```bash
cd LightRAG
pip install -e .
```
* Install from PyPI
```bash
pip install lightrag-hku
```
## Quick Start
* [Video demo](https://www.youtube.com/watch?v=g21royNJ4fw) of running LightRAG locally.
* All the code can be found in the `examples`.
* Set OpenAI API key in environment if using OpenAI models: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens":
```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```
Use the below Python snippet (in a script) to initialize LightRAG and perform queries:
```python
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
```
<details>
<summary> Using Open AI-like APIs </summary>
* LightRAG also supports Open AI-like chat/embeddings APIs:
```python
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar"
)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
max_token_size=8192,
func=embedding_func
)
)
```
</details>
<details>
<summary> Using Hugging Face Models </summary>
* If you want to use Hugging Face models, you only need to set LightRAG as follows:
```python
from lightrag.llm import hf_model_complete, hf_embedding
from transformers import AutoModel, AutoTokenizer
from lightrag.utils import EmbeddingFunc
# Initialize LightRAG with Hugging Face model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete, # Use Hugging Face model for text generation
llm_model_name='meta-llama/Llama-3.1-8B-Instruct', # Model name from Hugging Face
# Use Hugging Face embedding function
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embedding(
texts,
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
)
),
)
```
</details>
<details>
<summary> Using Ollama Models </summary>
### Overview
If you want to use Ollama models, you need to pull model you plan to use and embedding model, for example `nomic-embed-text`.
Then you only need to set LightRAG as follows:
```python
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc
# Initialize LightRAG with Ollama model
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts,
embed_model="nomic-embed-text"
)
),
)
```
### Using Neo4J for Storage
* For production level scenarios you will most likely want to leverage an enterprise solution
* for KG storage. Running Neo4J in Docker is recommended for seamless local testing.
* See: https://hub.docker.com/_/neo4j
```python
export NEO4J_URI="neo4j://localhost:7687"
export NEO4J_USERNAME="neo4j"
export NEO4J_PASSWORD="password"
When you launch the project be sure to override the default KG: NetworkS
by specifying kg="Neo4JStorage".
# Note: Default settings use NetworkX
#Initialize LightRAG with Neo4J implementation.
WORKING_DIR = "./local_neo4jWorkDir"
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
kg="Neo4JStorage", #<-----------override KG default
log_level="DEBUG" #<-----------override log_level default
)
```
see test_neo4j.py for a working example.
### Increasing context size
In order for LightRAG to work context should be at least 32k tokens. By default Ollama models have context size of 8k. You can achieve this using one of two ways:
#### Increasing the `num_ctx` parameter in Modelfile.
1. Pull the model:
```bash
ollama pull qwen2
```
2. Display the model file:
```bash
ollama show --modelfile qwen2 > Modelfile
```
3. Edit the Modelfile by adding the following line:
```bash
PARAMETER num_ctx 32768
```
4. Create the modified model:
```bash
ollama create -f Modelfile qwen2m
```
#### Setup `num_ctx` via Ollama API.
Tiy can use `llm_model_kwargs` param to configure ollama:
```python
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete, # Use Ollama model for text generation
llm_model_name='your_model_name', # Your model name
llm_model_kwargs={"options": {"num_ctx": 32768}},
# Use Ollama embedding function
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts,
embed_model="nomic-embed-text"
)
),
)
```
#### Fully functional example
There fully functional example `examples/lightrag_ollama_demo.py` that utilizes `gemma2:2b` model, runs only 4 requests in parallel and set context size to 32k.
#### Low RAM GPUs
In order to run this experiment on low RAM GPU you should select small model and tune context window (increasing context increase memory consumption). For example, running this ollama example on repurposed mining GPU with 6Gb of RAM required to set context size to 26k while using `gemma2:2b`. It was able to find 197 entities and 19 relations on `book.txt`.
</details>
### Query Param
```python
class QueryParam:
mode: Literal["local", "global", "hybrid", "naive"] = "global"
only_need_context: bool = False
response_type: str = "Multiple Paragraphs"
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
top_k: int = 60
# Number of tokens for the original chunks.
max_token_for_text_unit: int = 4000
# Number of tokens for the relationship descriptions
max_token_for_global_context: int = 4000
# Number of tokens for the entity descriptions
max_token_for_local_context: int = 4000
```
### Batch Insert
```python
# Batch Insert: Insert multiple texts at once
rag.insert(["TEXT1", "TEXT2",...])
```
### Incremental Insert
```python
# Incremental Insert: Insert new documents into an existing LightRAG instance
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
with open("./newText.txt") as f:
rag.insert(f.read())
```
### Delete Entity
```python
# Delete Entity: Deleting entities by their names
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)
rag.delete_by_entity("Project Gutenberg")
```
### Multi-file Type Support
The `textract` supports reading file types such as TXT, DOCX, PPTX, CSV, and PDF.
```python
import textract
file_path = 'TEXT.pdf'
text_content = textract.process(file_path)
rag.insert(text_content.decode('utf-8'))
```
### Graph Visualization
<details>
<summary> Graph visualization with html </summary>
* The following code can be found in `examples/graph_visual_with_html.py`
```python
import networkx as nx
from pyvis.network import Network
# Load the GraphML file
G = nx.read_graphml('./dickens/graph_chunk_entity_relation.graphml')
# Create a Pyvis network
net = Network(notebook=True)
# Convert NetworkX graph to Pyvis network
net.from_nx(G)
# Save and display the network
net.show('knowledge_graph.html')
```
</details>
<details>
<summary> Graph visualization with Neo4j </summary>
* The following code can be found in `examples/graph_visual_with_neo4j.py`
```python
import os
import json
from lightrag.utils import xml_to_json
from neo4j import GraphDatabase
# Constants
WORKING_DIR = "./dickens"
BATCH_SIZE_NODES = 500
BATCH_SIZE_EDGES = 100
# Neo4j connection credentials
NEO4J_URI = "bolt://localhost:7687"
NEO4J_USERNAME = "neo4j"
NEO4J_PASSWORD = "your_password"
def convert_xml_to_json(xml_path, output_path):
"""Converts XML file to JSON and saves the output."""
if not os.path.exists(xml_path):
print(f"Error: File not found - {xml_path}")
return None
json_data = xml_to_json(xml_path)
if json_data:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2)
print(f"JSON file created: {output_path}")
return json_data
else:
print("Failed to create JSON data")
return None
def process_in_batches(tx, query, data, batch_size):
"""Process data in batches and execute the given query."""
for i in range(0, len(data), batch_size):
batch = data[i:i + batch_size]
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
def main():
# Paths
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
# Convert XML to JSON
json_data = convert_xml_to_json(xml_file, json_file)
if json_data is None:
return
# Load nodes and edges
nodes = json_data.get('nodes', [])
edges = json_data.get('edges', [])
# Neo4j queries
create_nodes_query = """
UNWIND $nodes AS node
MERGE (e:Entity {id: node.id})
SET e.entity_type = node.entity_type,
e.description = node.description,
e.source_id = node.source_id,
e.displayName = node.id
REMOVE e:Entity
WITH e, node
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
RETURN count(*)
"""
create_edges_query = """
UNWIND $edges AS edge
MATCH (source {id: edge.source})
MATCH (target {id: edge.target})
WITH source, target, edge,
CASE
WHEN edge.keywords CONTAINS 'lead' THEN 'lead'
WHEN edge.keywords CONTAINS 'participate' THEN 'participate'
WHEN edge.keywords CONTAINS 'uses' THEN 'uses'
WHEN edge.keywords CONTAINS 'located' THEN 'located'
WHEN edge.keywords CONTAINS 'occurs' THEN 'occurs'
ELSE REPLACE(SPLIT(edge.keywords, ',')[0], '\"', '')
END AS relType
CALL apoc.create.relationship(source, relType, {
weight: edge.weight,
description: edge.description,
keywords: edge.keywords,
source_id: edge.source_id
}, target) YIELD rel
RETURN count(*)
"""
set_displayname_and_labels_query = """
MATCH (n)
SET n.displayName = n.id
WITH n
CALL apoc.create.setLabels(n, [n.entity_type]) YIELD node
RETURN count(*)
"""
# Create a Neo4j driver
driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USERNAME, NEO4J_PASSWORD))
try:
# Execute queries in batches
with driver.session() as session:
# Insert nodes in batches
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
# Insert edges in batches
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
# Set displayName and labels
session.run(set_displayname_and_labels_query)
except Exception as e:
print(f"Error occurred: {e}")
finally:
driver.close()
if __name__ == "__main__":
main()
```
</details>
## API Server Implementation
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
### Setting up the API Server
<details>
<summary>Click to expand setup instructions</summary>
1. First, ensure you have the required dependencies:
```bash
pip install fastapi uvicorn pydantic
```
2. Set up your environment variables:
```bash
export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
export OPENAI_BASE_URL="Your OpenAI API base URL" # Optional: Defaults to "https://api.openai.com/v1"
export OPENAI_API_KEY="Your OpenAI API key" # Required
export LLM_MODEL="Your LLM model" # Optional: Defaults to "gpt-4o-mini"
export EMBEDDING_MODEL="Your embedding model" # Optional: Defaults to "text-embedding-3-large"
```
3. Run the API server:
```bash
python examples/lightrag_api_openai_compatible_demo.py
```
The server will start on `http://0.0.0.0:8020`.
</details>
### API Endpoints
The API server provides the following endpoints:
#### 1. Query Endpoint
<details>
<summary>Click to view Query endpoint details</summary>
- **URL:** `/query`
- **Method:** POST
- **Body:**
```json
{
"query": "Your question here",
"mode": "hybrid", // Can be "naive", "local", "global", or "hybrid"
"only_need_context": true // Optional: Defaults to false, if true, only the referenced context will be returned, otherwise the llm answer will be returned
}
```
- **Example:**
```bash
curl -X POST "http://127.0.0.1:8020/query" \
-H "Content-Type: application/json" \
-d '{"query": "What are the main themes?", "mode": "hybrid"}'
```
</details>
#### 2. Insert Text Endpoint
<details>
<summary>Click to view Insert Text endpoint details</summary>
- **URL:** `/insert`
- **Method:** POST
- **Body:**
```json
{
"text": "Your text content here"
}
```
- **Example:**
```bash
curl -X POST "http://127.0.0.1:8020/insert" \
-H "Content-Type: application/json" \
-d '{"text": "Content to be inserted into RAG"}'
```
</details>
#### 3. Insert File Endpoint
<details>
<summary>Click to view Insert File endpoint details</summary>
- **URL:** `/insert_file`
- **Method:** POST
- **Body:**
```json
{
"file_path": "path/to/your/file.txt"
}
```
- **Example:**
```bash
curl -X POST "http://127.0.0.1:8020/insert_file" \
-H "Content-Type: application/json" \
-d '{"file_path": "./book.txt"}'
```
</details>
#### 4. Health Check Endpoint
<details>
<summary>Click to view Health Check endpoint details</summary>
- **URL:** `/health`
- **Method:** GET
- **Example:**
```bash
curl -X GET "http://127.0.0.1:8020/health"
```
</details>
### Configuration
The API server can be configured using environment variables:
- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
### Error Handling
<details>
<summary>Click to view error handling details</summary>
The API includes comprehensive error handling:
- File not found errors (404)
- Processing errors (500)
- Supports multiple file encodings (UTF-8 and GBK)
</details>
## Evaluation
### Dataset
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code in `example/generate_query.py`.
<details>
<summary> Prompt </summary>
```python
Given the following description of a dataset:
{description}
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
Output the results in the following structure:
- User 1: [user description]
- Task 1: [task description]
- Question 1:
- Question 2:
- Question 3:
- Question 4:
- Question 5:
- Task 2: [task description]
...
- Task 5: [task description]
- User 2: [user description]
...
- User 5: [user description]
...
```
</details>
### Batch Eval
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
<details>
<summary> Prompt </summary>
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?
For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.
Here is the question:
{query}
Here are the two answers:
**Answer 1:**
{answer1}
**Answer 2:**
{answer2}
Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.
Output your evaluation in the following JSON format:
{{
"Comprehensiveness": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Empowerment": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Provide explanation here]"
}},
"Overall Winner": {{
"Winner": "[Answer 1 or Answer 2]",
"Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
}}
}}
```
</details>
### Overall Performance Table
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
| **Comprehensiveness** | 32.4% | **67.6%** | 38.4% | **61.6%** | 16.4% | **83.6%** | 38.8% | **61.2%** |
| **Diversity** | 23.6% | **76.4%** | 38.0% | **62.0%** | 13.6% | **86.4%** | 32.4% | **67.6%** |
| **Empowerment** | 32.4% | **67.6%** | 38.8% | **61.2%** | 16.4% | **83.6%** | 42.8% | **57.2%** |
| **Overall** | 32.4% | **67.6%** | 38.8% | **61.2%** | 15.2% | **84.8%** | 40.0% | **60.0%** |
| | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** | RQ-RAG | **LightRAG** |
| **Comprehensiveness** | 31.6% | **68.4%** | 38.8% | **61.2%** | 15.2% | **84.8%** | 39.2% | **60.8%** |
| **Diversity** | 29.2% | **70.8%** | 39.2% | **60.8%** | 11.6% | **88.4%** | 30.8% | **69.2%** |
| **Empowerment** | 31.6% | **68.4%** | 36.4% | **63.6%** | 15.2% | **84.8%** | 42.4% | **57.6%** |
| **Overall** | 32.4% | **67.6%** | 38.0% | **62.0%** | 14.4% | **85.6%** | 40.0% | **60.0%** |
| | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** | HyDE | **LightRAG** |
| **Comprehensiveness** | 26.0% | **74.0%** | 41.6% | **58.4%** | 26.8% | **73.2%** | 40.4% | **59.6%** |
| **Diversity** | 24.0% | **76.0%** | 38.8% | **61.2%** | 20.0% | **80.0%** | 32.4% | **67.6%** |
| **Empowerment** | 25.2% | **74.8%** | 40.8% | **59.2%** | 26.0% | **74.0%** | 46.0% | **54.0%** |
| **Overall** | 24.8% | **75.2%** | 41.6% | **58.4%** | 26.4% | **73.6%** | 42.4% | **57.6%** |
| | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** | GraphRAG | **LightRAG** |
| **Comprehensiveness** | 45.6% | **54.4%** | 48.4% | **51.6%** | 48.4% | **51.6%** | **50.4%** | 49.6% |
| **Diversity** | 22.8% | **77.2%** | 40.8% | **59.2%** | 26.4% | **73.6%** | 36.0% | **64.0%** |
| **Empowerment** | 41.2% | **58.8%** | 45.2% | **54.8%** | 43.6% | **56.4%** | **50.8%** | 49.2% |
| **Overall** | 45.2% | **54.8%** | 48.0% | **52.0%** | 47.2% | **52.8%** | **50.4%** | 49.6% |
## Reproduce
All the code can be found in the `./reproduce` directory.
### Step-0 Extract Unique Contexts
First, we need to extract unique contexts in the datasets.
<details>
<summary> Code </summary>
```python
def extract_unique_contexts(input_directory, output_directory):
os.makedirs(output_directory, exist_ok=True)
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
print(f"Found {len(jsonl_files)} JSONL files.")
for file_path in jsonl_files:
filename = os.path.basename(file_path)
name, ext = os.path.splitext(filename)
output_filename = f"{name}_unique_contexts.json"
output_path = os.path.join(output_directory, output_filename)
unique_contexts_dict = {}
print(f"Processing file: {filename}")
try:
with open(file_path, 'r', encoding='utf-8') as infile:
for line_number, line in enumerate(infile, start=1):
line = line.strip()
if not line:
continue
try:
json_obj = json.loads(line)
context = json_obj.get('context')
if context and context not in unique_contexts_dict:
unique_contexts_dict[context] = None
except json.JSONDecodeError as e:
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
except FileNotFoundError:
print(f"File not found: {filename}")
continue
except Exception as e:
print(f"An error occurred while processing file {filename}: {e}")
continue
unique_contexts_list = list(unique_contexts_dict.keys())
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
try:
with open(output_path, 'w', encoding='utf-8') as outfile:
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
print(f"Unique `context` entries have been saved to: {output_filename}")
except Exception as e:
print(f"An error occurred while saving to the file {output_filename}: {e}")
print("All files have been processed.")
```
</details>
### Step-1 Insert Contexts
For the extracted contexts, we insert them into the LightRAG system.
<details>
<summary> Code </summary>
```python
def insert_text(rag, file_path):
with open(file_path, mode='r') as f:
unique_contexts = json.load(f)
retries = 0
max_retries = 3
while retries < max_retries:
try:
rag.insert(unique_contexts)
break
except Exception as e:
retries += 1
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
time.sleep(10)
if retries == max_retries:
print("Insertion failed after exceeding the maximum number of retries")
```
</details>
### Step-2 Generate Queries
We extract tokens from the first and the second half of each context in the dataset, then combine them as dataset descriptions to generate queries.
<details>
<summary> Code </summary>
```python
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
def get_summary(context, tot_tokens=2000):
tokens = tokenizer.tokenize(context)
half_tokens = tot_tokens // 2
start_tokens = tokens[1000:1000 + half_tokens]
end_tokens = tokens[-(1000 + half_tokens):1000]
summary_tokens = start_tokens + end_tokens
summary = tokenizer.convert_tokens_to_string(summary_tokens)
return summary
```
</details>
### Step-3 Query
For the queries generated in Step-2, we will extract them and query LightRAG.
<details>
<summary> Code </summary>
```python
def extract_queries(file_path):
with open(file_path, 'r') as f:
data = f.read()
data = data.replace('**', '')
queries = re.findall(r'- Question \d+: (.+)', data)
return queries
```
</details>
## Code Structure
```python
.
βββ examples
β βββ batch_eval.py
β βββ generate_query.py
β βββ graph_visual_with_html.py
β βββ graph_visual_with_neo4j.py
β βββ lightrag_api_openai_compatible_demo.py
β βββ lightrag_azure_openai_demo.py
β βββ lightrag_bedrock_demo.py
β βββ lightrag_hf_demo.py
β βββ lightrag_lmdeploy_demo.py
β βββ lightrag_ollama_demo.py
β βββ lightrag_openai_compatible_demo.py
β βββ lightrag_openai_demo.py
β βββ lightrag_siliconcloud_demo.py
β βββ vram_management_demo.py
βββ lightrag
β βββ kg
β β βββ __init__.py
β β βββ neo4j_impl.py
β βββ __init__.py
β βββ base.py
β βββ lightrag.py
β βββ llm.py
β βββ operate.py
β βββ prompt.py
β βββ storage.py
β βββ utils.py
βββ reproduce
β βββ Step_0.py
β βββ Step_1_openai_compatible.py
β βββ Step_1.py
β βββ Step_2.py
β βββ Step_3_openai_compatible.py
β βββ Step_3.py
βββ .gitignore
βββ .pre-commit-config.yaml
βββ Dockerfile
βββ get_all_edges_nx.py
βββ LICENSE
βββ README.md
βββ requirements.txt
βββ setup.py
βββ test_neo4j.py
βββ test.py
```
## Star History
<a href="https://star-history.com/#HKUDS/LightRAG&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=HKUDS/LightRAG&type=Date" />
</picture>
</a>
## Contribution
Thank you to all our contributors!
<a href="https://github.com/HKUDS/LightRAG/graphs/contributors">
<img src="https://contrib.rocks/image?repo=HKUDS/LightRAG" />
</a>
## πCitation
```python
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation},
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```
**Thank you for your interest in our work!**
|