File size: 1,943 Bytes
2bf176d
baf8eca
 
 
cc851d6
baf8eca
cc851d6
2bf176d
 
 
 
 
 
 
cc851d6
baf8eca
 
cc851d6
 
 
baf8eca
 
 
 
 
2379c94
baf8eca
 
 
 
 
2379c94
 
cc851d6
2379c94
 
 
 
 
cc851d6
2379c94
 
 
 
cc851d6
 
2379c94
cc851d6
 
 
 
2379c94
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import os
import streamlit as st
from PIL import Image
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration

# Get Hugging Face API key from environment variables
HF_TOKEN = os.getenv("HF_KEY")

# Ensure API key is available
if not HF_TOKEN:
    st.error("โŒ Hugging Face API key not found! Set it as 'HF_KEY' in Spaces secrets.")
    st.stop()

# Load the model and processor
@st.cache_resource
def load_model():
    model_id = "google/paligemma2-3b-mix-224"
    model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval()
    processor = PaliGemmaProcessor.from_pretrained(model_id)
    return processor, model

processor, model = load_model()

# Streamlit UI
st.title("๐Ÿ–ผ๏ธ Image Understanding with PaliGemma")

uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])

if uploaded_file:
    image = Image.open(uploaded_file).convert("RGB")
    st.image(image, caption="Uploaded Image", use_container_width=True)

    # User input for task selection
    task = st.selectbox(
        "Select a task:",
        ["Generate a caption", "Answer a question", "Detect objects", "Generate segmentation"]
    )

    # User prompt
    prompt = st.text_area("Enter a prompt (e.g., 'Describe the image' or 'What objects are present?')")

    if st.button("Run"):
        if prompt:
            inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
            input_len = inputs["input_ids"].shape[-1]  # Get input length

            with torch.inference_mode():
                generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
                generation = generation[0][input_len:]  # Remove input tokens from output
                answer = processor.decode(generation, skip_special_tokens=True)

            st.success(f"โœ… Result: {answer}")