Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +323 -0
- dockerfile +43 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pdfplumber
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
import numpy as np
|
6 |
+
from flask import Flask, request, jsonify
|
7 |
+
from flask_cors import CORS
|
8 |
+
import transformers # Full import for logging
|
9 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
10 |
+
from datasets import load_dataset, concatenate_datasets
|
11 |
+
import torch
|
12 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
13 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
+
|
15 |
+
app = Flask(__name__)
|
16 |
+
CORS(app) # Enable CORS for frontend compatibility
|
17 |
+
UPLOAD_FOLDER = os.path.join(os.getcwd(), 'uploads')
|
18 |
+
PEGASUS_MODEL_DIR = 'fine_tuned_pegasus'
|
19 |
+
BERT_MODEL_DIR = 'fine_tuned_bert'
|
20 |
+
LEGALBERT_MODEL_DIR = 'fine_tuned_legalbert'
|
21 |
+
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100 MB limit
|
22 |
+
|
23 |
+
# Ensure upload folder exists
|
24 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
25 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
26 |
+
|
27 |
+
transformers.logging.set_verbosity_error() # Suppress transformers warnings
|
28 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
29 |
+
|
30 |
+
# Pegasus Fine-Tuning
|
31 |
+
def load_or_finetune_pegasus():
|
32 |
+
if os.path.exists(PEGASUS_MODEL_DIR):
|
33 |
+
print("Loading fine-tuned Pegasus model...")
|
34 |
+
tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
|
35 |
+
model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
|
36 |
+
else:
|
37 |
+
print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
|
38 |
+
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
|
39 |
+
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
40 |
+
|
41 |
+
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
|
42 |
+
xsum = load_dataset("xsum", split="train[:5000]")
|
43 |
+
combined_dataset = concatenate_datasets([cnn_dm, xsum])
|
44 |
+
|
45 |
+
def preprocess_function(examples):
|
46 |
+
inputs = tokenizer(examples["article"] if "article" in examples else examples["document"],
|
47 |
+
max_length=512, truncation=True, padding="max_length")
|
48 |
+
targets = tokenizer(examples["highlights"] if "highlights" in examples else examples["summary"],
|
49 |
+
max_length=400, truncation=True, padding="max_length")
|
50 |
+
inputs["labels"] = targets["input_ids"]
|
51 |
+
return inputs
|
52 |
+
|
53 |
+
tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
|
54 |
+
train_dataset = tokenized_dataset.select(range(8000))
|
55 |
+
eval_dataset = tokenized_dataset.select(range(8000, 10000))
|
56 |
+
|
57 |
+
training_args = TrainingArguments(
|
58 |
+
output_dir="./pegasus_finetune",
|
59 |
+
num_train_epochs=3,
|
60 |
+
per_device_train_batch_size=1,
|
61 |
+
per_device_eval_batch_size=1,
|
62 |
+
warmup_steps=500,
|
63 |
+
weight_decay=0.01,
|
64 |
+
logging_dir="./logs",
|
65 |
+
logging_steps=10,
|
66 |
+
eval_strategy="epoch",
|
67 |
+
save_strategy="epoch",
|
68 |
+
load_best_model_at_end=True,
|
69 |
+
)
|
70 |
+
|
71 |
+
trainer = Trainer(
|
72 |
+
model=model,
|
73 |
+
args=training_args,
|
74 |
+
train_dataset=train_dataset,
|
75 |
+
eval_dataset=eval_dataset,
|
76 |
+
)
|
77 |
+
|
78 |
+
trainer.train()
|
79 |
+
trainer.save_model(PEGASUS_MODEL_DIR)
|
80 |
+
tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
|
81 |
+
print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
|
82 |
+
|
83 |
+
return tokenizer, model
|
84 |
+
|
85 |
+
# BERT Fine-Tuning
|
86 |
+
def load_or_finetune_bert():
|
87 |
+
if os.path.exists(BERT_MODEL_DIR):
|
88 |
+
print("Loading fine-tuned BERT model...")
|
89 |
+
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
|
90 |
+
model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
|
91 |
+
else:
|
92 |
+
print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
|
93 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
94 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
95 |
+
|
96 |
+
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
|
97 |
+
|
98 |
+
def preprocess_for_extractive(examples):
|
99 |
+
sentences = []
|
100 |
+
labels = []
|
101 |
+
for article, highlights in zip(examples["article"], examples["highlights"]):
|
102 |
+
article_sents = article.split(". ")
|
103 |
+
highlight_sents = highlights.split(". ")
|
104 |
+
for sent in article_sents:
|
105 |
+
if sent.strip():
|
106 |
+
is_summary = any(sent.strip() in h for h in highlight_sents)
|
107 |
+
sentences.append(sent)
|
108 |
+
labels.append(1 if is_summary else 0)
|
109 |
+
return {"sentence": sentences, "label": labels}
|
110 |
+
|
111 |
+
dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
|
112 |
+
tokenized_dataset = dataset.map(
|
113 |
+
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
|
114 |
+
batched=True
|
115 |
+
)
|
116 |
+
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
|
117 |
+
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
|
118 |
+
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
|
119 |
+
|
120 |
+
training_args = TrainingArguments(
|
121 |
+
output_dir="./bert_finetune",
|
122 |
+
num_train_epochs=3,
|
123 |
+
per_device_train_batch_size=8,
|
124 |
+
per_device_eval_batch_size=8,
|
125 |
+
warmup_steps=500,
|
126 |
+
weight_decay=0.01,
|
127 |
+
logging_dir="./logs",
|
128 |
+
logging_steps=10,
|
129 |
+
eval_strategy="epoch",
|
130 |
+
save_strategy="epoch",
|
131 |
+
load_best_model_at_end=True,
|
132 |
+
)
|
133 |
+
|
134 |
+
trainer = Trainer(
|
135 |
+
model=model,
|
136 |
+
args=training_args,
|
137 |
+
train_dataset=train_dataset,
|
138 |
+
eval_dataset=eval_dataset,
|
139 |
+
)
|
140 |
+
|
141 |
+
trainer.train()
|
142 |
+
trainer.save_model(BERT_MODEL_DIR)
|
143 |
+
tokenizer.save_pretrained(BERT_MODEL_DIR)
|
144 |
+
print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
|
145 |
+
|
146 |
+
return tokenizer, model
|
147 |
+
|
148 |
+
# LegalBERT Fine-Tuning
|
149 |
+
def load_or_finetune_legalbert():
|
150 |
+
if os.path.exists(LEGALBERT_MODEL_DIR):
|
151 |
+
print("Loading fine-tuned LegalBERT model...")
|
152 |
+
tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
|
153 |
+
model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
|
154 |
+
else:
|
155 |
+
print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
|
156 |
+
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
|
157 |
+
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
|
158 |
+
|
159 |
+
billsum = load_dataset("billsum", split="train[:5000]")
|
160 |
+
|
161 |
+
def preprocess_for_extractive(examples):
|
162 |
+
sentences = []
|
163 |
+
labels = []
|
164 |
+
for text, summary in zip(examples["text"], examples["summary"]):
|
165 |
+
text_sents = text.split(". ")
|
166 |
+
summary_sents = summary.split(". ")
|
167 |
+
for sent in text_sents:
|
168 |
+
if sent.strip():
|
169 |
+
is_summary = any(sent.strip() in s for s in summary_sents)
|
170 |
+
sentences.append(sent)
|
171 |
+
labels.append(1 if is_summary else 0)
|
172 |
+
return {"sentence": sentences, "label": labels}
|
173 |
+
|
174 |
+
dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
|
175 |
+
tokenized_dataset = dataset.map(
|
176 |
+
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
|
177 |
+
batched=True
|
178 |
+
)
|
179 |
+
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
|
180 |
+
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
|
181 |
+
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
|
182 |
+
|
183 |
+
training_args = TrainingArguments(
|
184 |
+
output_dir="./legalbert_finetune",
|
185 |
+
num_train_epochs=3,
|
186 |
+
per_device_train_batch_size=8,
|
187 |
+
per_device_eval_batch_size=8,
|
188 |
+
warmup_steps=500,
|
189 |
+
weight_decay=0.01,
|
190 |
+
logging_dir="./logs",
|
191 |
+
logging_steps=10,
|
192 |
+
eval_strategy="epoch",
|
193 |
+
save_strategy="epoch",
|
194 |
+
load_best_model_at_end=True,
|
195 |
+
)
|
196 |
+
|
197 |
+
trainer = Trainer(
|
198 |
+
model=model,
|
199 |
+
args=training_args,
|
200 |
+
train_dataset=train_dataset,
|
201 |
+
eval_dataset=eval_dataset,
|
202 |
+
)
|
203 |
+
|
204 |
+
trainer.train()
|
205 |
+
trainer.save_model(LEGALBERT_MODEL_DIR)
|
206 |
+
tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
|
207 |
+
print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
|
208 |
+
|
209 |
+
return tokenizer, model
|
210 |
+
|
211 |
+
# Load models
|
212 |
+
pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
|
213 |
+
bert_tokenizer, bert_model = load_or_finetune_bert()
|
214 |
+
legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()
|
215 |
+
|
216 |
+
def extract_text_from_pdf(file_path):
|
217 |
+
text = ""
|
218 |
+
with pdfplumber.open(file_path) as pdf:
|
219 |
+
for page in pdf.pages:
|
220 |
+
text += page.extract_text() or ""
|
221 |
+
return text
|
222 |
+
|
223 |
+
def extract_text_from_image(file_path):
|
224 |
+
image = Image.open(file_path)
|
225 |
+
text = pytesseract.image_to_string(image)
|
226 |
+
return text
|
227 |
+
|
228 |
+
def choose_model(text):
|
229 |
+
legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
|
230 |
+
tfidf = TfidfVectorizer(vocabulary=legal_keywords)
|
231 |
+
tfidf_matrix = tfidf.fit_transform([text.lower()])
|
232 |
+
score = np.sum(tfidf_matrix.toarray())
|
233 |
+
if score > 0.1:
|
234 |
+
return "legalbert"
|
235 |
+
elif len(text.split()) > 50:
|
236 |
+
return "pegasus"
|
237 |
+
else:
|
238 |
+
return "bert"
|
239 |
+
|
240 |
+
def summarize_with_pegasus(text):
|
241 |
+
inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
|
242 |
+
summary_ids = pegasus_model.generate(
|
243 |
+
inputs["input_ids"],
|
244 |
+
max_length=400, min_length=80, length_penalty=1.5, num_beams=4
|
245 |
+
)
|
246 |
+
return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
247 |
+
|
248 |
+
def summarize_with_bert(text):
|
249 |
+
sentences = text.split(". ")
|
250 |
+
if len(sentences) < 6:
|
251 |
+
return text
|
252 |
+
inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
253 |
+
with torch.no_grad():
|
254 |
+
outputs = bert_model(**inputs)
|
255 |
+
logits = outputs.logits
|
256 |
+
probs = torch.softmax(logits, dim=1)[:, 1]
|
257 |
+
key_sentence_idx = probs.argsort(descending=True)[:5]
|
258 |
+
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
|
259 |
+
|
260 |
+
def summarize_with_legalbert(text):
|
261 |
+
sentences = text.split(". ")
|
262 |
+
if len(sentences) < 6:
|
263 |
+
return text
|
264 |
+
inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
265 |
+
with torch.no_grad():
|
266 |
+
outputs = legalbert_model(**inputs)
|
267 |
+
logits = outputs.logits
|
268 |
+
probs = torch.softmax(logits, dim=1)[:, 1]
|
269 |
+
key_sentence_idx = probs.argsort(descending=True)[:5]
|
270 |
+
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
|
271 |
+
|
272 |
+
@app.route('/summarize', methods=['POST'])
|
273 |
+
def summarize_document():
|
274 |
+
if 'file' not in request.files:
|
275 |
+
return jsonify({"error": "No file uploaded"}), 400
|
276 |
+
|
277 |
+
file = request.files['file']
|
278 |
+
filename = file.filename
|
279 |
+
file.seek(0, os.SEEK_END)
|
280 |
+
file_size = file.tell()
|
281 |
+
if file_size > MAX_FILE_SIZE:
|
282 |
+
return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
|
283 |
+
file.seek(0)
|
284 |
+
file_path = os.path.join(UPLOAD_FOLDER, filename)
|
285 |
+
try:
|
286 |
+
file.save(file_path)
|
287 |
+
except Exception as e:
|
288 |
+
return jsonify({"error": f"Failed to save file: {str(e)}"}), 500
|
289 |
+
|
290 |
+
try:
|
291 |
+
if filename.endswith('.pdf'):
|
292 |
+
text = extract_text_from_pdf(file_path)
|
293 |
+
elif filename.endswith(('.png', '.jpeg', '.jpg')):
|
294 |
+
text = extract_text_from_image(file_path)
|
295 |
+
else:
|
296 |
+
os.remove(file_path)
|
297 |
+
return jsonify({"error": "Unsupported file format."}), 400
|
298 |
+
except Exception as e:
|
299 |
+
os.remove(file_path)
|
300 |
+
return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500
|
301 |
+
|
302 |
+
if not text.strip():
|
303 |
+
os.remove(file_path)
|
304 |
+
return jsonify({"error": "No text extracted"}), 400
|
305 |
+
|
306 |
+
try:
|
307 |
+
model = choose_model(text)
|
308 |
+
if model == "pegasus":
|
309 |
+
summary = summarize_with_pegasus(text)
|
310 |
+
elif model == "bert":
|
311 |
+
summary = summarize_with_bert(text)
|
312 |
+
elif model == "legalbert":
|
313 |
+
summary = summarize_with_legalbert(text)
|
314 |
+
except Exception as e:
|
315 |
+
os.remove(file_path)
|
316 |
+
return jsonify({"error": f"Summarization failed: {str(e)}"}), 500
|
317 |
+
|
318 |
+
os.remove(file_path)
|
319 |
+
return jsonify({"model_used": model, "summary": summary})
|
320 |
+
|
321 |
+
if __name__ == '__main__':
|
322 |
+
port = int(os.environ.get("PORT", 5000)) # Use PORT env var if set by Hugging Face
|
323 |
+
app.run(debug=False, host='0.0.0.0', port=port)
|
dockerfile
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as the base image
|
2 |
+
FROM python:3.8-slim
|
3 |
+
|
4 |
+
# Set working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Install system dependencies for pdfplumber, pytesseract, and general compatibility
|
8 |
+
RUN apt-get update && apt-get install -y \
|
9 |
+
tesseract-ocr \
|
10 |
+
libtesseract-dev \
|
11 |
+
poppler-utils \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Copy application code
|
15 |
+
COPY . /app
|
16 |
+
|
17 |
+
# Install Python dependencies, including sentencepiece for Pegasus
|
18 |
+
RUN pip install --no-cache-dir \
|
19 |
+
flask \
|
20 |
+
flask-cors \
|
21 |
+
pdfplumber \
|
22 |
+
pillow \
|
23 |
+
pytesseract \
|
24 |
+
numpy \
|
25 |
+
torch \
|
26 |
+
transformers \
|
27 |
+
datasets \
|
28 |
+
scikit-learn \
|
29 |
+
gunicorn \
|
30 |
+
sentencepiece
|
31 |
+
|
32 |
+
# Create uploads and cache directories with proper permissions
|
33 |
+
RUN mkdir -p /app/uploads /app/cache && \
|
34 |
+
chmod -R 777 /app/uploads /app/cache
|
35 |
+
|
36 |
+
# Set environment variable for Hugging Face cache (using HF_HOME as per latest transformers recommendation)
|
37 |
+
ENV HF_HOME=/app/cache
|
38 |
+
|
39 |
+
# Expose port (Hugging Face Spaces typically uses 7860, but we'll stick to 5000 and adjust in app.py if needed)
|
40 |
+
EXPOSE 5000
|
41 |
+
|
42 |
+
# Run with Gunicorn
|
43 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:5000", "app:app"]
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
pdfplumber
|
4 |
+
pillow
|
5 |
+
pytesseract
|
6 |
+
numpy
|
7 |
+
torch
|
8 |
+
transformers
|
9 |
+
datasets
|
10 |
+
scikit-learn
|
11 |
+
gunicorn
|
12 |
+
sentencepiece
|