import math
import warnings
from functools import partial
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn

import transformers
from transformers.models.llama.modeling_llama import *
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from .configuration_mplug_docowl import LlamaConfig

class MultiwayNetwork(nn.Module):

    def __init__(self, module_provider, num_multiway=2):
        super(MultiwayNetwork, self).__init__()

        self.multiway = torch.nn.ModuleList([module_provider() for _ in range(num_multiway)])
    
    def forward(self, hidden_states, multiway_indices):

        if len(self.multiway) == 1:
            return self.multiway[0](hidden_states)

        output_hidden_states = torch.empty_like(hidden_states)
        
        for idx, subway in enumerate(self.multiway):
            local_indices = multiway_indices.eq(idx).nonzero(as_tuple=True)
            hidden = hidden_states[local_indices].unsqueeze(1).contiguous()
            if hidden.numel():
                output = subway(hidden)
                if isinstance(output, tuple):
                    output = output[0]
                output = output.squeeze(1)
                output_hidden_states[local_indices] = output
        
        return output_hidden_states.contiguous()
    

class LlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
        self.k_proj = MultiwayNetwork(module_provider=partial(
            nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        )
        self.v_proj = MultiwayNetwork(module_provider=partial(
            nn.Linear, in_features=self.hidden_size, out_features=self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
        )
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
        self._init_rope()

    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = LlamaRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            scaling_type = self.config.rope_scaling["type"]
            scaling_factor = self.config.rope_scaling["factor"]
            if scaling_type == "linear":
                self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            elif scaling_type == "dynamic":
                self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
                    self.head_dim,
                    max_position_embeddings=self.max_position_embeddings,
                    scaling_factor=scaling_factor,
                    base=self.rope_theta,
                )
            else:
                raise ValueError(f"Unknown RoPE scaling type {scaling_type}")

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        modality_indicators: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        padding_mask: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states, )
        key_states = self.k_proj(hidden_states, modality_indicators)
        value_states = self.v_proj(hidden_states, modality_indicators)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value



class LlamaDecoderLayer(nn.Module):
    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(config=config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = MultiwayNetwork(module_provider=partial(
            LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
        ))
        self.post_attention_layernorm = MultiwayNetwork(module_provider=partial(
            LlamaRMSNorm, hidden_size=config.hidden_size, eps=config.rms_norm_eps
        ))

    def forward(
        self,
        hidden_states: torch.Tensor,
        modality_indicators: torch.Tensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states, modality_indicators)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            modality_indicators=modality_indicators,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states, modality_indicators)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


def model_forward(
    self,
    input_ids: torch.LongTensor = None,
    modality_indicators: torch.Tensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    use_cache = use_cache if use_cache is not None else self.config.use_cache

    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # retrieve input_ids and inputs_embeds
    if input_ids is not None and inputs_embeds is not None:
        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
    elif input_ids is not None:
        batch_size, seq_length = input_ids.shape
    elif inputs_embeds is not None:
        batch_size, seq_length, _ = inputs_embeds.shape
    else:
        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

    seq_length_with_past = seq_length
    past_key_values_length = 0

    if past_key_values is not None:
        past_key_values_length = past_key_values[0][0].shape[2]
        seq_length_with_past = seq_length_with_past + past_key_values_length

    if position_ids is None:
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        position_ids = torch.arange(
            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
        )
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
    else:
        position_ids = position_ids.view(-1, seq_length).long()

    if inputs_embeds is None:
        inputs_embeds = self.embed_tokens(input_ids)
    # embed positions
    if attention_mask is None:
        attention_mask = torch.ones(
            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
        )
    attention_mask = self._prepare_decoder_attention_mask(
        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
    )

    hidden_states = inputs_embeds

    if self.gradient_checkpointing and self.training:
        if use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
            )
            use_cache = False

    # decoder layers
    all_hidden_states = () if output_hidden_states else None
    all_self_attns = () if output_attentions else None
    next_decoder_cache = () if use_cache else None

    for idx, decoder_layer in enumerate(self.layers):
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        past_key_value = past_key_values[idx] if past_key_values is not None else None

        if self.gradient_checkpointing and self.training:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    # None for past_key_value
                    return module(*inputs, past_key_value, output_attentions)

                return custom_forward

            layer_outputs = torch.utils.checkpoint.checkpoint(
                create_custom_forward(decoder_layer),
                hidden_states,
                modality_indicators,
                attention_mask,
                position_ids,
            )
        else:
            layer_outputs = decoder_layer(
                hidden_states,
                modality_indicators=modality_indicators,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

        hidden_states = layer_outputs[0]

        if use_cache:
            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

        if output_attentions:
            all_self_attns += (layer_outputs[1],)

    hidden_states = self.norm(hidden_states)

    # add hidden states from the last decoder layer
    if output_hidden_states:
        all_hidden_states += (hidden_states,)

    next_cache = next_decoder_cache if use_cache else None
    if not return_dict:
        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
    return BaseModelOutputWithPast(
        last_hidden_state=hidden_states,
        past_key_values=next_cache,
        hidden_states=all_hidden_states,
        attentions=all_self_attns,
    )


def causal_model_forward(
    self,
    input_ids: torch.LongTensor = None,
    modality_indicators: torch.Tensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[List[torch.FloatTensor]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

    Returns:

    Example:

    ```python
    >>> from transformers import AutoTokenizer, LlamaForCausalLM

    >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

    >>> prompt = "Hey, are you conscious? Can you talk to me?"
    >>> inputs = tokenizer(prompt, return_tensors="pt")

    >>> # Generate
    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
    ```"""

    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        modality_indicators=modality_indicators,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
    )

    hidden_states = outputs[0]
    if self.config.pretraining_tp > 1:
        lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
        logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
        logits = torch.cat(logits, dim=-1)
    else:
        logits = self.lm_head(hidden_states)
    logits = logits.float()

    loss = None
    if labels is not None:
        # Shift so that tokens < n predict n
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        # Flatten the tokens
        loss_fct = CrossEntropyLoss()
        shift_logits = shift_logits.view(-1, self.config.vocab_size)
        shift_labels = shift_labels.view(-1)
        # Enable model parallelism
        shift_labels = shift_labels.to(shift_logits.device)
        loss = loss_fct(shift_logits, shift_labels)

    if not return_dict:
        output = (logits,) + outputs[1:]
        return (loss,) + output if loss is not None else output

    return CausalLMOutputWithPast(
        loss=loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

def replace_llama_modality_adaptive():
    transformers.models.llama.configuration_llama.LlamaConfig = LlamaConfig
    transformers.models.llama.modeling_llama.LlamaAttention = LlamaAttention
    transformers.models.llama.modeling_llama.LlamaDecoderLayer = LlamaDecoderLayer
    transformers.models.llama.modeling_llama.LlamaModel.forward = model_forward
    transformers.models.llama.modeling_llama.LlamaForCausalLM.forward = causal_model_forward

    
if __name__ == "__main__":
    replace_llama_modality_adaptive()
    config = transformers.LlamaConfig.from_pretrained('/cpfs01/shared/public/test/vicuna-7b-v1.5/')
    model = transformers.LlamaForCausalLM(config)
    print(model)