File size: 7,538 Bytes
c202d7d
 
 
 
 
 
300388f
c202d7d
cc05af6
c202d7d
 
 
 
 
 
 
 
 
 
 
 
 
 
eb6e73c
300388f
c202d7d
cc05af6
c202d7d
 
 
 
 
cc05af6
 
c202d7d
eb6e73c
300388f
 
c202d7d
 
 
4b57d62
c202d7d
cc05af6
c202d7d
 
cc05af6
 
 
 
 
c202d7d
 
 
 
cc05af6
c202d7d
 
 
 
 
 
215aa92
 
 
c202d7d
 
cc05af6
c202d7d
 
 
 
 
cc05af6
c202d7d
 
 
cc05af6
 
 
 
 
 
c202d7d
 
 
 
 
 
 
cc05af6
 
 
 
 
 
 
 
 
 
 
 
c202d7d
 
4b57d62
 
 
215aa92
4b57d62
 
 
 
 
 
 
2867e41
4b57d62
2867e41
4b57d62
3b24e83
215aa92
4b57d62
 
 
 
cc05af6
c202d7d
 
 
 
 
cc05af6
c202d7d
 
 
 
cc05af6
 
 
c202d7d
 
 
 
 
 
 
 
 
cc05af6
c202d7d
cc05af6
c202d7d
cc05af6
c202d7d
 
 
cc05af6
215aa92
 
 
9f897d4
 
 
215aa92
f738aa2
 
 
215aa92
 
c202d7d
300388f
 
c202d7d
 
 
 
 
 
 
eb6e73c
300388f
c202d7d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks
from src.about import ClinicalTypes


def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False
    dataset_task_col: bool = False
    clinical_type_col: bool = False    


## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True)])
for task in ClinicalTypes:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, clinical_type_col=True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["backbone", ColumnContent, ColumnContent("Base Model", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, True)])
auto_eval_column_dict.append(
    ["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, True)]
)
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)


## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    architecture = ColumnContent("model_architecture", "bool", True)
    # precision = ColumnContent("precision", "str", True)
    # weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)


## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji


class ModelType(Enum):
    ZEROSHOT = ModelDetails(name="zero-shot", symbol="⚫")
    FINETUNED = ModelDetails(name="fine-tuned", symbol="⚪")
    # PT = ModelDetails(name="pretrained", symbol="🟢")
    # FT = ModelDetails(name="fine-tuned", symbol="🔶")
    # IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    # RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "zero-shot" in type or "⚫" in type:
            return ModelType.ZEROSHOT
        if "fine-tuned" in type or "⚪" in type:
            return ModelType.FINETUNED
        # if "fine-tuned" in type or "🔶" in type:
        #     return ModelType.FT
        # if "pretrained" in type or "🟢" in type:
        #     return ModelType.PT
        # if "RL-tuned" in type or "🟦" in type:
        #     return ModelType.RL
        # if "instruction-tuned" in type or "⭕" in type:
        #     return ModelType.IFT
        return ModelType.Unknown

class ModelArch(Enum):
    Encoder = ModelDetails("Encoder")
    Decoder = ModelDetails("Decoder")
    GLiNEREncoder = ModelDetails("GLiNER Encoder")
    Unknown = ModelDetails(name="Other", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.name}"

    @staticmethod
    def from_str(type):
        if "Encoder" == type:
            return ModelArch.Encoder
        if "Decoder" == type:
            return ModelArch.Decoder
        if "GLiNER Encoder" == type:
            return ModelArch.GLiNEREncoder
        # if "unknown" in type:
        #     return ModelArch.Unknown
        return ModelArch.Unknown


class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")


class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    float32 = ModelDetails("float32")
    # qt_8bit = ModelDetails("8bit")
    # qt_4bit = ModelDetails("4bit")
    # qt_GPTQ = ModelDetails("GPTQ")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        if precision in ["float32"]:
            return Precision.float32
        # if precision in ["8bit"]:
        #    return Precision.qt_8bit
        # if precision in ["4bit"]:
        #    return Precision.qt_4bit
        # if precision in ["GPTQ", "None"]:
        #    return Precision.qt_GPTQ
        return Precision.Unknown


class PromptTemplateName(Enum):
    UniversalNERTemplate = "universal_ner"
    LLMHTMLHighlightedSpansTemplate = "llm_html_highlighted_spans"
    LLMHTMLHighlightedSpansTemplateV1 = "llm_html_highlighted_spans_v1"
    LLamaNERTemplate = "llama_70B_ner"
    # MixtralNERTemplate = "mixtral_ner_v0.3"

class EvaluationMetrics(Enum):
    SpanBased = "Span Based"
    TokenBased = "Token Based"


# Column selection
DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.clinical_type_col]
Clinical_TYPES_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

DATASET_BENCHMARK_COLS = [t.value.col_name for t in Tasks]
TYPES_BENCHMARK_COLS = [t.value.col_name for t in ClinicalTypes]

NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}