Spaces:
Running
Running
Commit
ยท
094d4db
1
Parent(s):
20dad4a
[FIX] Read evals
Browse files- app.py +113 -112
- src/envs.py +1 -1
- src/leaderboard/read_evals.py +27 -15
app.py
CHANGED
|
@@ -262,118 +262,6 @@ with demo:
|
|
| 262 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 263 |
|
| 264 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 265 |
-
with gr.TabItem("๐
Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
|
| 266 |
-
with gr.Row():
|
| 267 |
-
with gr.Column():
|
| 268 |
-
with gr.Row():
|
| 269 |
-
search_bar = gr.Textbox(
|
| 270 |
-
placeholder=" ๐ Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 271 |
-
show_label=False,
|
| 272 |
-
elem_id="search-bar",
|
| 273 |
-
)
|
| 274 |
-
with gr.Row():
|
| 275 |
-
shown_columns = gr.CheckboxGroup(
|
| 276 |
-
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 277 |
-
value=[
|
| 278 |
-
c.name
|
| 279 |
-
for c in fields(AutoEvalColumn)
|
| 280 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 281 |
-
],
|
| 282 |
-
label="Select columns to show",
|
| 283 |
-
elem_id="column-select",
|
| 284 |
-
interactive=True,
|
| 285 |
-
)
|
| 286 |
-
# with gr.Row():
|
| 287 |
-
# deleted_models_visibility = gr.Checkbox(
|
| 288 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 289 |
-
# )
|
| 290 |
-
with gr.Column(min_width=320):
|
| 291 |
-
# with gr.Box(elem_id="box-filter"):
|
| 292 |
-
filter_columns_type = gr.CheckboxGroup(
|
| 293 |
-
label="Model Types",
|
| 294 |
-
choices=[t.to_str() for t in ModelType],
|
| 295 |
-
value=[t.to_str() for t in ModelType],
|
| 296 |
-
interactive=True,
|
| 297 |
-
elem_id="filter-columns-type",
|
| 298 |
-
)
|
| 299 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
| 300 |
-
# label="Architecture Types",
|
| 301 |
-
# choices=[i.value.name for i in ModelArch],
|
| 302 |
-
# value=[i.value.name for i in ModelArch],
|
| 303 |
-
# interactive=True,
|
| 304 |
-
# elem_id="filter-columns-architecture",
|
| 305 |
-
# )
|
| 306 |
-
filter_domain_specific = gr.CheckboxGroup(
|
| 307 |
-
label="Domain Specificity",
|
| 308 |
-
choices=["๐ฅ Clinical models", "Generic models"],
|
| 309 |
-
value=["๐ฅ Clinical models", "Generic models"],
|
| 310 |
-
interactive=True,
|
| 311 |
-
elem_id="filter-columns-type",
|
| 312 |
-
)
|
| 313 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 314 |
-
label="Model sizes (in billions of parameters)",
|
| 315 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
| 316 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
| 317 |
-
interactive=True,
|
| 318 |
-
elem_id="filter-columns-size",
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 322 |
-
|
| 323 |
-
leaderboard_table = gr.components.Dataframe(
|
| 324 |
-
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 325 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 326 |
-
datatype=TYPES,
|
| 327 |
-
elem_id="leaderboard-table",
|
| 328 |
-
interactive=False,
|
| 329 |
-
visible=True,
|
| 330 |
-
)
|
| 331 |
-
|
| 332 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 333 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 334 |
-
value=datasets_original_df[DATASET_COLS],
|
| 335 |
-
headers=DATASET_COLS,
|
| 336 |
-
datatype=TYPES,
|
| 337 |
-
visible=False,
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
search_bar.submit(
|
| 342 |
-
update_table,
|
| 343 |
-
[
|
| 344 |
-
hidden_leaderboard_table_for_search,
|
| 345 |
-
shown_columns,
|
| 346 |
-
search_bar,
|
| 347 |
-
filter_columns_type,
|
| 348 |
-
filter_domain_specific,
|
| 349 |
-
filter_columns_size
|
| 350 |
-
# filter_columns_architecture
|
| 351 |
-
],
|
| 352 |
-
leaderboard_table,
|
| 353 |
-
)
|
| 354 |
-
for selector in [
|
| 355 |
-
shown_columns,
|
| 356 |
-
filter_columns_type,
|
| 357 |
-
filter_domain_specific,
|
| 358 |
-
# filter_columns_architecture,
|
| 359 |
-
filter_columns_size,
|
| 360 |
-
# deleted_models_visibility,
|
| 361 |
-
]:
|
| 362 |
-
selector.change(
|
| 363 |
-
update_table,
|
| 364 |
-
[
|
| 365 |
-
hidden_leaderboard_table_for_search,
|
| 366 |
-
shown_columns,
|
| 367 |
-
search_bar,
|
| 368 |
-
filter_columns_type,
|
| 369 |
-
filter_domain_specific,
|
| 370 |
-
filter_columns_size
|
| 371 |
-
# filter_columns_architecture,
|
| 372 |
-
],
|
| 373 |
-
leaderboard_table,
|
| 374 |
-
queue=True,
|
| 375 |
-
)
|
| 376 |
-
|
| 377 |
with gr.TabItem("๐
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 378 |
with gr.Row():
|
| 379 |
with gr.Column():
|
|
@@ -1065,6 +953,119 @@ with demo:
|
|
| 1065 |
leaderboard_table,
|
| 1066 |
queue=True,
|
| 1067 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1068 |
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=5):
|
| 1069 |
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
| 1070 |
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
|
|
|
| 262 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 263 |
|
| 264 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
with gr.TabItem("๐
Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
| 266 |
with gr.Row():
|
| 267 |
with gr.Column():
|
|
|
|
| 953 |
leaderboard_table,
|
| 954 |
queue=True,
|
| 955 |
)
|
| 956 |
+
with gr.TabItem("๐
Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0):
|
| 957 |
+
with gr.Row():
|
| 958 |
+
with gr.Column():
|
| 959 |
+
with gr.Row():
|
| 960 |
+
search_bar = gr.Textbox(
|
| 961 |
+
placeholder=" ๐ Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 962 |
+
show_label=False,
|
| 963 |
+
elem_id="search-bar",
|
| 964 |
+
)
|
| 965 |
+
with gr.Row():
|
| 966 |
+
shown_columns = gr.CheckboxGroup(
|
| 967 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
| 968 |
+
value=[
|
| 969 |
+
c.name
|
| 970 |
+
for c in fields(AutoEvalColumn)
|
| 971 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
| 972 |
+
],
|
| 973 |
+
label="Select columns to show",
|
| 974 |
+
elem_id="column-select",
|
| 975 |
+
interactive=True,
|
| 976 |
+
)
|
| 977 |
+
# with gr.Row():
|
| 978 |
+
# deleted_models_visibility = gr.Checkbox(
|
| 979 |
+
# value=False, label="Show gated/private/deleted models", interactive=True
|
| 980 |
+
# )
|
| 981 |
+
with gr.Column(min_width=320):
|
| 982 |
+
# with gr.Box(elem_id="box-filter"):
|
| 983 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 984 |
+
label="Model Types",
|
| 985 |
+
choices=[t.to_str() for t in ModelType],
|
| 986 |
+
value=[t.to_str() for t in ModelType],
|
| 987 |
+
interactive=True,
|
| 988 |
+
elem_id="filter-columns-type",
|
| 989 |
+
)
|
| 990 |
+
# filter_columns_architecture = gr.CheckboxGroup(
|
| 991 |
+
# label="Architecture Types",
|
| 992 |
+
# choices=[i.value.name for i in ModelArch],
|
| 993 |
+
# value=[i.value.name for i in ModelArch],
|
| 994 |
+
# interactive=True,
|
| 995 |
+
# elem_id="filter-columns-architecture",
|
| 996 |
+
# )
|
| 997 |
+
filter_domain_specific = gr.CheckboxGroup(
|
| 998 |
+
label="Domain Specificity",
|
| 999 |
+
choices=["๐ฅ Clinical models", "Generic models"],
|
| 1000 |
+
value=["๐ฅ Clinical models", "Generic models"],
|
| 1001 |
+
interactive=True,
|
| 1002 |
+
elem_id="filter-columns-type",
|
| 1003 |
+
)
|
| 1004 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 1005 |
+
label="Model sizes (in billions of parameters)",
|
| 1006 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 1007 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 1008 |
+
interactive=True,
|
| 1009 |
+
elem_id="filter-columns-size",
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
| 1013 |
+
|
| 1014 |
+
leaderboard_table = gr.components.Dataframe(
|
| 1015 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
| 1016 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 1017 |
+
datatype=TYPES,
|
| 1018 |
+
elem_id="leaderboard-table",
|
| 1019 |
+
interactive=False,
|
| 1020 |
+
visible=True,
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 1024 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 1025 |
+
value=datasets_original_df[DATASET_COLS],
|
| 1026 |
+
headers=DATASET_COLS,
|
| 1027 |
+
datatype=TYPES,
|
| 1028 |
+
visible=False,
|
| 1029 |
+
)
|
| 1030 |
+
|
| 1031 |
+
|
| 1032 |
+
search_bar.submit(
|
| 1033 |
+
update_table,
|
| 1034 |
+
[
|
| 1035 |
+
hidden_leaderboard_table_for_search,
|
| 1036 |
+
shown_columns,
|
| 1037 |
+
search_bar,
|
| 1038 |
+
filter_columns_type,
|
| 1039 |
+
filter_domain_specific,
|
| 1040 |
+
filter_columns_size
|
| 1041 |
+
# filter_columns_architecture
|
| 1042 |
+
],
|
| 1043 |
+
leaderboard_table,
|
| 1044 |
+
)
|
| 1045 |
+
for selector in [
|
| 1046 |
+
shown_columns,
|
| 1047 |
+
filter_columns_type,
|
| 1048 |
+
filter_domain_specific,
|
| 1049 |
+
# filter_columns_architecture,
|
| 1050 |
+
filter_columns_size,
|
| 1051 |
+
# deleted_models_visibility,
|
| 1052 |
+
]:
|
| 1053 |
+
selector.change(
|
| 1054 |
+
update_table,
|
| 1055 |
+
[
|
| 1056 |
+
hidden_leaderboard_table_for_search,
|
| 1057 |
+
shown_columns,
|
| 1058 |
+
search_bar,
|
| 1059 |
+
filter_columns_type,
|
| 1060 |
+
filter_domain_specific,
|
| 1061 |
+
filter_columns_size
|
| 1062 |
+
# filter_columns_architecture,
|
| 1063 |
+
],
|
| 1064 |
+
leaderboard_table,
|
| 1065 |
+
queue=True,
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
|
| 1069 |
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=5):
|
| 1070 |
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text")
|
| 1071 |
gr.HTML(FIVE_PILLAR_DIAGRAM)
|
src/envs.py
CHANGED
|
@@ -8,7 +8,7 @@ TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
|
| 8 |
|
| 9 |
OWNER = "m42-health" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
# ----------------------------------
|
| 11 |
-
PRIVATE_REPO =
|
| 12 |
|
| 13 |
|
| 14 |
if PRIVATE_REPO:
|
|
|
|
| 8 |
|
| 9 |
OWNER = "m42-health" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
# ----------------------------------
|
| 11 |
+
PRIVATE_REPO = False
|
| 12 |
|
| 13 |
|
| 14 |
if PRIVATE_REPO:
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -54,7 +54,8 @@ class EvalResult:
|
|
| 54 |
except:
|
| 55 |
breakpoint()
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
config = data.get("config")
|
| 59 |
|
| 60 |
# Precision
|
|
@@ -113,7 +114,8 @@ class EvalResult:
|
|
| 113 |
if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None:
|
| 114 |
open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0]))
|
| 115 |
open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0]))
|
| 116 |
-
#
|
|
|
|
| 117 |
# changes to be made here
|
| 118 |
med_safety_results = {}
|
| 119 |
if "med-safety" in data["results"]:
|
|
@@ -178,12 +180,12 @@ class EvalResult:
|
|
| 178 |
continue
|
| 179 |
mean_acc = np.mean(accs) # * 100.0
|
| 180 |
closed_ended_arabic_results[task.benchmark] = mean_acc
|
| 181 |
-
if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
# types_results = {}
|
| 188 |
# for clinical_type in ClinicalTypes:
|
| 189 |
# clinical_type = clinical_type.value
|
|
@@ -195,7 +197,8 @@ class EvalResult:
|
|
| 195 |
|
| 196 |
# mean_acc = np.mean(accs) # * 100.0
|
| 197 |
# types_results[clinical_type.benchmark] = mean_acc
|
| 198 |
-
|
|
|
|
| 199 |
return self(
|
| 200 |
eval_name=result_key,
|
| 201 |
full_model=full_model,
|
|
@@ -337,6 +340,14 @@ def get_request_file_for_model(requests_path, model_name, precision):
|
|
| 337 |
request_file = tmp_request_file
|
| 338 |
return request_file
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
|
| 342 |
"""From the path of the results folder root, extract all needed info for results"""
|
|
@@ -355,7 +366,7 @@ def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metri
|
|
| 355 |
|
| 356 |
for file in files:
|
| 357 |
model_result_filepaths.append(os.path.join(root, file))
|
| 358 |
-
|
| 359 |
eval_results = {}
|
| 360 |
for model_result_filepath in model_result_filepaths:
|
| 361 |
# Creation of result
|
|
@@ -364,11 +375,12 @@ def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metri
|
|
| 364 |
|
| 365 |
# Store results of same eval together
|
| 366 |
eval_name = eval_result.eval_name
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
| 372 |
results = []
|
| 373 |
# clinical_type_results = []
|
| 374 |
for v in eval_results.values():
|
|
|
|
| 54 |
except:
|
| 55 |
breakpoint()
|
| 56 |
|
| 57 |
+
# if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
|
| 58 |
+
# breakpoint()
|
| 59 |
config = data.get("config")
|
| 60 |
|
| 61 |
# Precision
|
|
|
|
| 114 |
if open_ended_results["ELO_intervals"] is not None and open_ended_results["Score_intervals"] is not None:
|
| 115 |
open_ended_results["ELO_intervals"] = "+" + str(open_ended_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_results["ELO_intervals"][0]))
|
| 116 |
open_ended_results["Score_intervals"] = "+" + str(open_ended_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_results["Score_intervals"][0]))
|
| 117 |
+
# if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
|
| 118 |
+
# breakpoint()
|
| 119 |
# changes to be made here
|
| 120 |
med_safety_results = {}
|
| 121 |
if "med-safety" in data["results"]:
|
|
|
|
| 180 |
continue
|
| 181 |
mean_acc = np.mean(accs) # * 100.0
|
| 182 |
closed_ended_arabic_results[task.benchmark] = mean_acc
|
| 183 |
+
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
| 184 |
+
# open_ended_results = {}
|
| 185 |
+
# med_safety_results = {}
|
| 186 |
+
# medical_summarization_results = {}
|
| 187 |
+
# aci_results = {}
|
| 188 |
+
# soap_results = {}
|
| 189 |
# types_results = {}
|
| 190 |
# for clinical_type in ClinicalTypes:
|
| 191 |
# clinical_type = clinical_type.value
|
|
|
|
| 197 |
|
| 198 |
# mean_acc = np.mean(accs) # * 100.0
|
| 199 |
# types_results[clinical_type.benchmark] = mean_acc
|
| 200 |
+
# if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
|
| 201 |
+
# breakpoint()
|
| 202 |
return self(
|
| 203 |
eval_name=result_key,
|
| 204 |
full_model=full_model,
|
|
|
|
| 340 |
request_file = tmp_request_file
|
| 341 |
return request_file
|
| 342 |
|
| 343 |
+
def update_results(result1, result2):
|
| 344 |
+
# breakpoint()
|
| 345 |
+
for key in dir(result1):
|
| 346 |
+
if key.endswith("_results"):
|
| 347 |
+
if getattr(result1, key) == {}:
|
| 348 |
+
setattr(result1, key, getattr(result2, key))
|
| 349 |
+
# breakpoint()
|
| 350 |
+
return result1
|
| 351 |
|
| 352 |
def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
|
| 353 |
"""From the path of the results folder root, extract all needed info for results"""
|
|
|
|
| 366 |
|
| 367 |
for file in files:
|
| 368 |
model_result_filepaths.append(os.path.join(root, file))
|
| 369 |
+
# breakpoint()
|
| 370 |
eval_results = {}
|
| 371 |
for model_result_filepath in model_result_filepaths:
|
| 372 |
# Creation of result
|
|
|
|
| 375 |
|
| 376 |
# Store results of same eval together
|
| 377 |
eval_name = eval_result.eval_name
|
| 378 |
+
if eval_name in eval_results.keys():
|
| 379 |
+
eval_results[eval_name] = update_results(eval_results[eval_name], eval_result)
|
| 380 |
+
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 381 |
+
else:
|
| 382 |
+
eval_results[eval_name] = eval_result
|
| 383 |
+
# breakpoint()
|
| 384 |
results = []
|
| 385 |
# clinical_type_results = []
|
| 386 |
for v in eval_results.values():
|