Spaces:
Runtime error
Runtime error
File size: 6,349 Bytes
f474d6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer
from transformers import GPT2LMHeadModel
from mtranslate import translate
import random
import meta
from normalizer import normalize
from utils import (
remote_css,
local_css,
load_json
)
EXAMPLES = load_json("examples.json")
CK = "متن"
QK = "پرسش"
AK = "پاسخ"
class TextGeneration:
def __init__(self):
self.debug = False
self.dummy_output = "مخلوطی از ایتالیایی و انگلیسی"
self.tokenizer = None
self.model = None
self.model_name_or_path = "m3hrdadfi/gpt2-persian-qa"
self.length_margin = 100
set_seed(42)
def load(self):
if not self.debug:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
self.model = GPT2LMHeadModel.from_pretrained(self.model_name_or_path)
def generate(self, prompt, generation_kwargs):
if not self.debug:
input_ids = self.tokenizer([prompt], return_tensors="pt")["input_ids"]
max_length = len(input_ids[0]) + self.length_margin
generation_kwargs["max_length"] = max_length
generated = self.model.generate(
input_ids,
**generation_kwargs,
)[0]
answer = self.tokenizer.decode(generated, skip_special_tokens=True)
found = answer.find(f"{AK}: ")
if not found:
return ""
answer = [a.strip() for a in answer[found:].split(f"{AK}: ") if a.strip()]
answer = answer[0] if len(answer) > 0 else ""
return answer
return self.dummy_output
@st.cache(allow_output_mutation=True)
def load_text_generator():
generator = TextGeneration()
generator.load()
return generator
def main():
st.set_page_config(
page_title="GPT2 QA - Persian",
page_icon="⁉️",
layout="wide",
initial_sidebar_state="expanded"
)
remote_css("https://cdn.jsdelivr.net/gh/rastikerdar/vazir-font/dist/font-face.css")
local_css("assets/rtl.css")
generator = load_text_generator()
st.sidebar.markdown(meta.SIDEBAR_INFO)
num_beams = st.sidebar.slider(
label='Number of Beam',
help="Number of beams for beam search",
min_value=4,
max_value=15,
value=5,
step=1
)
repetition_penalty = st.sidebar.slider(
label='Repetition Penalty',
help="The parameter for repetition penalty",
min_value=1.0,
max_value=10.0,
value=1.0,
step=0.1
)
length_penalty = st.sidebar.slider(
label='Length Penalty',
help="Exponential penalty to the length",
min_value=1.0,
max_value=10.0,
value=1.0,
step=0.1
)
early_stopping = st.sidebar.selectbox(
label='Early Stopping ?',
options=(True, False),
help="Whether to stop the beam search when at least num_beams sentences are finished per batch or not",
)
translated = st.sidebar.selectbox(
label='Translation ?',
options=(True, False),
help="Will translate the result in English",
)
generation_kwargs = {
"num_beams": num_beams,
"early_stopping": early_stopping,
"repetition_penalty": repetition_penalty,
"length_penalty": length_penalty,
}
st.markdown(meta.HEADER_INFO)
prompts = [e["title"] for e in EXAMPLES] + ["Custom"]
prompt = st.selectbox('Examples', prompts, index=len(prompts) - 1)
if prompt == "Custom":
prompt_box = {
"context": meta.C_PROMPT_BOX,
"question": meta.Q_PROMPT_BOX,
"answer": meta.A_PROMPT_BOX,
}
else:
prompt_box = next(e for e in EXAMPLES if e["title"] == prompt)
context = st.text_area("Enter context", prompt_box["context"], height=250)
question = st.text_area("Enter question", prompt_box["question"], height=100)
answer = "پاسخ درست: " + prompt_box["answer"]
st.markdown(
f'<p class="rtl rtl-box">'
f'{answer}'
f'<p>',
unsafe_allow_html=True
)
if translated:
translated_answer = translate(answer, "en", "fa")
st.markdown(
f'<p class="ltr">'
f'{translated_answer}'
f'<p>',
unsafe_allow_html=True
)
generation_kwargs_ph = st.empty()
if st.button("Find the answer 🔎 "):
with st.spinner(text="Searching ..."):
generation_kwargs_ph.markdown(", ".join([f"`{k}`: {v}" for k, v in generation_kwargs.items()]))
context = normalize(context)
question = normalize(question)
if context and question:
text = f"{context} {QK}: {question} {AK}:"
generated_answer = generator.generate(text, generation_kwargs)
generated_answer = f"{AK}: {generated_answer}".strip()
context = f"{CK}: {context}".strip()
question = f"{QK}: {question}".strip()
st.markdown(
f'<p class="rtl rtl-box">'
f'<span class="result-text">{context}<span><br/><br/>'
f'<span class="result-text">{question}<span><br/><br/>'
f'<span class="result-text generated-text">{generated_answer} </span>'
f'</p>',
unsafe_allow_html=True
)
if translated:
translated_context = translate(context, "en", "fa")
translated_question = translate(question, "en", "fa")
translated_generated_answer = translate(generated_answer, "en", "fa")
st.markdown(
f'<p class="ltr ltr-box">'
f'<span class="result-text">{translated_context}<span><br/><br/>'
f'<span class="result-text">{translated_question}<span><br/><br/>'
f'<span class="result-text generated-text">{translated_generated_answer}</span>'
f'</p>',
unsafe_allow_html=True
)
if __name__ == '__main__':
main()
|