Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,763 Bytes
b97f2de e76df21 b97f2de e76df21 b97f2de a379d16 e76df21 b97f2de a32e93b b97f2de a32e93b b97f2de e76df21 b97f2de e76df21 b97f2de a32e93b b97f2de 4ffcfc1 718b72f 4ffcfc1 b97f2de e76df21 b97f2de 4ffcfc1 b97f2de 4ffcfc1 b97f2de 4ffcfc1 b97f2de a379d16 ec4b275 1a257da a379d16 4ffcfc1 b97f2de a379d16 b97f2de a379d16 b97f2de 4ffcfc1 a63edd5 b97f2de a63edd5 4ffcfc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
from smolagents import Tool
class GoogleSearchTool(Tool):
name = "web_search"
description = """Performs a google web search for your query then returns a string of the top search results."""
inputs = {
"query": {"type": "string", "description": "The search query to perform."},
"filter_year": {
"type": "integer",
"description": "Optionally restrict results to a certain year",
"nullable": True,
},
}
output_type = "string"
def __init__(self):
super().__init__(self)
import os
self.serpapi_key = os.getenv("SERPER_API_KEY")
def forward(self, query: str, filter_year: Optional[int] = None) -> str:
import requests
if self.serpapi_key is None:
raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.")
params = {
"engine": "google",
"q": query,
"api_key": self.serpapi_key,
"google_domain": "google.com",
}
headers = {
'X-API-KEY': self.serpapi_key,
'Content-Type': 'application/json'
}
if filter_year is not None:
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"
response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params))
if response.status_code == 200:
results = response.json()
else:
raise ValueError(response.json())
if "organic" not in results.keys():
print("REZZZ", results.keys())
if filter_year is not None:
raise Exception(
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
)
else:
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
if len(results["organic"]) == 0:
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."
web_snippets = []
if "organic" in results:
for idx, page in enumerate(results["organic"]):
date_published = ""
if "date" in page:
date_published = "\nDate published: " + page["date"]
source = ""
if "source" in page:
source = "\nSource: " + page["source"]
snippet = ""
if "snippet" in page:
snippet = "\n" + page["snippet"]
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"
redacted_version = redacted_version.replace("Your browser can't play this video.", "")
web_snippets.append(redacted_version)
return "## Search Results\n" + "\n\n".join(web_snippets)
# web_search = GoogleSearchTool()
# print(web_search(query="Donald Trump news"))
# quit()
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
model = LiteLLMModel(
"gpt-4o",
custom_role_conversions=custom_role_conversions,
api_key=os.getenv("OPENAI_API_KEY")
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
# Agent creation in a factory function
def create_agent():
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=[visualizer] + WEB_TOOLS,
max_steps=10,
verbosity_level=1,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
document_inspection_tool = TextInspectorTool(model, 20000)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
# Get or create session-specific agent
if 'agent' not in session_state:
session_state['agent'] = create_agent()
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
# Use session's agent instance
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
)
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
gr.Markdown("""# open Deep Research - free the AI agents!
_Built with [smolagents](https://github.com/huggingface/smolagents)_
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! β¨
You can try a simplified version below. π""")
# Add session state to store session-specific data
session_state = gr.State({}) # Initialize empty state for each session
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="open-Deep-Research",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Your request")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(self.interact_with_agent,
# Include session_state in function calls
[stored_messages, chatbot, session_state],
[chatbot]
)
demo.launch(debug=True, share=True, **kwargs)
GradioUI().launch() |