lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import time
import numpy as np
import random
import os
import socket
import typing as tp
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
# Change this to reflect your cluster layout.
# The GPU for a given rank is (rank % GPUS_PER_NODE).
GPUS_PER_NODE = 8
SETUP_RETRY_COUNT = 3
used_device = 0
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def setup_dist(device=0):
"""
Setup a distributed process group.
"""
global used_device
used_device = device
if dist.is_initialized():
return
def dev():
"""
Get the device to use for torch.distributed.
"""
global used_device
if torch.cuda.is_available() and used_device >= 0:
return torch.device(f"cuda:{used_device}")
return torch.device("cpu")
def load_state_dict(path, **kwargs):
"""
Load a PyTorch file without redundant fetches across MPI ranks.
"""
return torch.load(path, **kwargs)
def sync_params(params):
"""
Synchronize a sequence of Tensors across ranks from rank 0.
"""
for p in params:
with torch.no_grad():
dist.broadcast(p, 0)
def _find_free_port():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
finally:
s.close()
def world_size():
if torch.distributed.is_initialized():
return torch.distributed.get_world_size()
else:
return 1
def is_distributed():
return world_size() > 1
def all_reduce(tensor: torch.Tensor, op=torch.distributed.ReduceOp.SUM):
if is_distributed():
return torch.distributed.all_reduce(tensor, op)
def _is_complex_or_float(tensor):
return torch.is_floating_point(tensor) or torch.is_complex(tensor)
def _check_number_of_params(params: tp.List[torch.Tensor]):
# utility function to check that the number of params in all workers is the same,
# and thus avoid a deadlock with distributed all reduce.
if not is_distributed() or not params:
return
tensor = torch.tensor([len(params)], device=params[0].device, dtype=torch.long)
all_reduce(tensor)
if tensor.item() != len(params) * world_size():
# If not all the workers have the same number, for at least one of them,
# this inequality will be verified.
raise RuntimeError(
f"Mismatch in number of params: ours is {len(params)}, "
"at least one worker has a different one."
)
def broadcast_tensors(tensors: tp.Iterable[torch.Tensor], src: int = 0):
"""Broadcast the tensors from the given parameters to all workers.
This can be used to ensure that all workers have the same model to start with.
"""
if not is_distributed():
return
tensors = [tensor for tensor in tensors if _is_complex_or_float(tensor)]
_check_number_of_params(tensors)
handles = []
for tensor in tensors:
handle = torch.distributed.broadcast(tensor.data, src=src, async_op=True)
handles.append(handle)
for handle in handles:
handle.wait()
def fixseed(seed):
torch.backends.cudnn.benchmark = False
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def prGreen(skk):
print("\033[92m {}\033[00m".format(skk))
def prRed(skk):
print("\033[91m {}\033[00m".format(skk))
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.cpu().numpy()
elif type(tensor).__module__ != "numpy":
raise ValueError("Cannot convert {} to numpy array".format(type(tensor)))
return tensor
def to_torch(ndarray):
if type(ndarray).__module__ == "numpy":
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor".format(type(ndarray)))
return ndarray
def cleanexit():
import sys
import os
try:
sys.exit(0)
except SystemExit:
os._exit(0)
def load_model_wo_clip(model, state_dict):
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith("clip_model.") for k in missing_keys])
def freeze_joints(x, joints_to_freeze):
# Freezes selected joint *rotations* as they appear in the first frame
# x [bs, [root+n_joints], joint_dim(6), seqlen]
frozen = x.detach().clone()
frozen[:, joints_to_freeze, :, :] = frozen[:, joints_to_freeze, :, :1]
return frozen
class TimerError(Exception):
"""A custom exception used to report errors in use of Timer class"""
class Timer:
def __init__(self):
self._start_time = None
def start(self):
"""Start a new timer"""
if self._start_time is not None:
raise TimerError(f"Timer is running. Use .stop() to stop it")
self._start_time = time.perf_counter()
def stop(self, iter=None):
"""Stop the timer, and report the elapsed time"""
if self._start_time is None:
raise TimerError(f"Timer is not running. Use .start() to start it")
elapsed_time = time.perf_counter() - self._start_time
self._start_time = None
iter_msg = ""
if iter is not None:
if iter > elapsed_time:
iter_per_sec = iter / elapsed_time
iter_msg = f"[iter/s: {iter_per_sec:0.4f}]"
else:
sec_per_iter = elapsed_time / iter
iter_msg = f"[s/iter: {sec_per_iter:0.4f}]"
print(f"Elapsed time: {elapsed_time:0.4f} seconds {iter_msg}")