Spaces:
Runtime error
Runtime error
""" | |
Copyright (c) Meta Platforms, Inc. and affiliates. | |
All rights reserved. | |
This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import argparse | |
import json | |
import os | |
from argparse import ArgumentParser | |
def parse_and_load_from_model(parser): | |
# args according to the loaded model | |
# do not try to specify them from cmd line since they will be overwritten | |
add_data_options(parser) | |
add_model_options(parser) | |
add_diffusion_options(parser) | |
args = parser.parse_args() | |
args_to_overwrite = [] | |
for group_name in ["dataset", "model", "diffusion"]: | |
args_to_overwrite += get_args_per_group_name(parser, args, group_name) | |
args_to_overwrite += ["data_root"] | |
# load args from model | |
model_path = get_model_path_from_args() | |
args_path = os.path.join(os.path.dirname(model_path), "args.json") | |
print(args_path) | |
assert os.path.exists(args_path), "Arguments json file was not found!" | |
with open(args_path, "r") as fr: | |
model_args = json.load(fr) | |
for a in args_to_overwrite: | |
if a in model_args.keys(): | |
if a == "timestep_respacing" or a == "partial": | |
continue | |
setattr(args, a, model_args[a]) | |
elif "cond_mode" in model_args: # backward compitability | |
unconstrained = model_args["cond_mode"] == "no_cond" | |
setattr(args, "unconstrained", unconstrained) | |
else: | |
print( | |
"Warning: was not able to load [{}], using default value [{}] instead.".format( | |
a, args.__dict__[a] | |
) | |
) | |
if args.cond_mask_prob == 0: | |
args.guidance_param = 1 | |
return args | |
def get_args_per_group_name(parser, args, group_name): | |
for group in parser._action_groups: | |
if group.title == group_name: | |
group_dict = { | |
a.dest: getattr(args, a.dest, None) for a in group._group_actions | |
} | |
return list(argparse.Namespace(**group_dict).__dict__.keys()) | |
return ValueError("group_name was not found.") | |
def get_model_path_from_args(): | |
try: | |
dummy_parser = ArgumentParser() | |
dummy_parser.add_argument("model_path") | |
dummy_args, _ = dummy_parser.parse_known_args() | |
return dummy_args.model_path | |
except: | |
raise ValueError("model_path argument must be specified.") | |
def add_base_options(parser): | |
group = parser.add_argument_group("base") | |
group.add_argument( | |
"--cuda", default=True, type=bool, help="Use cuda device, otherwise use CPU." | |
) | |
group.add_argument("--device", default=0, type=int, help="Device id to use.") | |
group.add_argument("--seed", default=10, type=int, help="For fixing random seed.") | |
group.add_argument( | |
"--batch_size", default=64, type=int, help="Batch size during training." | |
) | |
def add_diffusion_options(parser): | |
group = parser.add_argument_group("diffusion") | |
group.add_argument( | |
"--noise_schedule", | |
default="cosine", | |
choices=["linear", "cosine"], | |
type=str, | |
help="Noise schedule type", | |
) | |
group.add_argument( | |
"--diffusion_steps", | |
default=10, | |
type=int, | |
help="Number of diffusion steps (denoted T in the paper)", | |
) | |
group.add_argument( | |
"--timestep_respacing", | |
default="ddim100", | |
type=str, | |
help="ddimN, else empty string", | |
) | |
group.add_argument( | |
"--sigma_small", default=True, type=bool, help="Use smaller sigma values." | |
) | |
def add_model_options(parser): | |
group = parser.add_argument_group("model") | |
group.add_argument("--layers", default=8, type=int, help="Number of layers.") | |
group.add_argument( | |
"--num_audio_layers", default=3, type=int, help="Number of audio layers." | |
) | |
group.add_argument("--heads", default=4, type=int, help="Number of heads.") | |
group.add_argument( | |
"--latent_dim", default=512, type=int, help="Transformer/GRU width." | |
) | |
group.add_argument( | |
"--cond_mask_prob", | |
default=0.20, | |
type=float, | |
help="The probability of masking the condition during training." | |
" For classifier-free guidance learning.", | |
) | |
group.add_argument( | |
"--lambda_vel", default=0.0, type=float, help="Joint velocity loss." | |
) | |
group.add_argument( | |
"--unconstrained", | |
action="store_true", | |
help="Model is trained unconditionally. That is, it is constrained by neither text nor action. " | |
"Currently tested on HumanAct12 only.", | |
) | |
group.add_argument( | |
"--data_format", | |
type=str, | |
choices=["pose", "face"], | |
default="pose", | |
help="whether or not to use vae for diffusion process", | |
) | |
group.add_argument("--not_rotary", action="store_true") | |
group.add_argument("--simplify_audio", action="store_true") | |
group.add_argument("--add_frame_cond", type=float, choices=[1], default=None) | |
def add_data_options(parser): | |
group = parser.add_argument_group("dataset") | |
group.add_argument( | |
"--dataset", | |
default="social", | |
choices=["social"], | |
type=str, | |
help="Dataset name (choose from list).", | |
) | |
group.add_argument("--data_root", type=str, default=None, help="dataset directory") | |
group.add_argument("--max_seq_length", default=600, type=int) | |
group.add_argument( | |
"--split", type=str, default=None, choices=["test", "train", "val"] | |
) | |
def add_training_options(parser): | |
group = parser.add_argument_group("training") | |
group.add_argument( | |
"--save_dir", | |
required=True, | |
type=str, | |
help="Path to save checkpoints and results.", | |
) | |
group.add_argument( | |
"--overwrite", | |
action="store_true", | |
help="If True, will enable to use an already existing save_dir.", | |
) | |
group.add_argument( | |
"--train_platform_type", | |
default="NoPlatform", | |
choices=["NoPlatform", "ClearmlPlatform", "TensorboardPlatform"], | |
type=str, | |
help="Choose platform to log results. NoPlatform means no logging.", | |
) | |
group.add_argument("--lr", default=1e-4, type=float, help="Learning rate.") | |
group.add_argument( | |
"--weight_decay", default=0.0, type=float, help="Optimizer weight decay." | |
) | |
group.add_argument( | |
"--lr_anneal_steps", | |
default=0, | |
type=int, | |
help="Number of learning rate anneal steps.", | |
) | |
group.add_argument( | |
"--log_interval", default=1_000, type=int, help="Log losses each N steps" | |
) | |
group.add_argument( | |
"--save_interval", | |
default=5_000, | |
type=int, | |
help="Save checkpoints and run evaluation each N steps", | |
) | |
group.add_argument( | |
"--num_steps", | |
default=800_000, | |
type=int, | |
help="Training will stop after the specified number of steps.", | |
) | |
group.add_argument( | |
"--resume_checkpoint", | |
default="", | |
type=str, | |
help="If not empty, will start from the specified checkpoint (path to model###.pt file).", | |
) | |
def add_sampling_options(parser): | |
group = parser.add_argument_group("sampling") | |
group.add_argument( | |
"--model_path", | |
required=True, | |
type=str, | |
help="Path to model####.pt file to be sampled.", | |
) | |
group.add_argument( | |
"--output_dir", | |
default="", | |
type=str, | |
help="Path to results dir (auto created by the script). " | |
"If empty, will create dir in parallel to checkpoint.", | |
) | |
group.add_argument("--face_codes", default=None, type=str) | |
group.add_argument("--pose_codes", default=None, type=str) | |
group.add_argument( | |
"--num_samples", | |
default=10, | |
type=int, | |
help="Maximal number of prompts to sample, " | |
"if loading dataset from file, this field will be ignored.", | |
) | |
group.add_argument( | |
"--num_repetitions", | |
default=3, | |
type=int, | |
help="Number of repetitions, per sample (text prompt/action)", | |
) | |
group.add_argument( | |
"--guidance_param", | |
default=2.5, | |
type=float, | |
help="For classifier-free sampling - specifies the s parameter, as defined in the paper.", | |
) | |
group.add_argument( | |
"--curr_seq_length", | |
default=None, | |
type=int, | |
) | |
group.add_argument( | |
"--render_gt", | |
action="store_true", | |
help="whether to use pretrained clipmodel for audio encoding", | |
) | |
def add_generate_options(parser): | |
group = parser.add_argument_group("generate") | |
group.add_argument( | |
"--plot", | |
action="store_true", | |
help="Whether or not to save the renderings as a video.", | |
) | |
group.add_argument( | |
"--resume_trans", | |
default=None, | |
type=str, | |
help="keyframe prediction network.", | |
) | |
group.add_argument("--flip_person", action="store_true") | |
def get_cond_mode(args): | |
if args.dataset == "social": | |
cond_mode = "audio" | |
return cond_mode | |
def train_args(): | |
parser = ArgumentParser() | |
add_base_options(parser) | |
add_data_options(parser) | |
add_model_options(parser) | |
add_diffusion_options(parser) | |
add_training_options(parser) | |
return parser.parse_args() | |
def generate_args(): | |
parser = ArgumentParser() | |
add_base_options(parser) | |
add_sampling_options(parser) | |
add_generate_options(parser) | |
args = parse_and_load_from_model(parser) | |
return args | |