audio2photoreal / train /training_loop.py
lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import cProfile as profile
import functools
import pstats
import blobfile as bf
import numpy as np
import torch
from torch.optim import AdamW
from tqdm import tqdm
import utils.logger as logger
from diffusion.fp16_util import MixedPrecisionTrainer
from diffusion.resample import LossAwareSampler, create_named_schedule_sampler
from utils.misc import dev, load_state_dict
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(
self, args, train_platform, model, diffusion, data, writer, rank=0, world_size=1
):
self.args = args
self.dataset = args.dataset
self.train_platform = train_platform
self.model = model
self.diffusion = diffusion
self.cond_mode = model.module.cond_mode if world_size > 1 else model.cond_mode
self.data = data
self.batch_size = args.batch_size
self.microbatch = args.batch_size # deprecating this option
self.lr = args.lr
self.log_interval = args.log_interval
self.save_interval = args.save_interval
self.resume_checkpoint = args.resume_checkpoint
self.use_fp16 = False # deprecating this option
self.fp16_scale_growth = 1e-3 # deprecating this option
self.weight_decay = args.weight_decay
self.lr_anneal_steps = args.lr_anneal_steps
self.rank = rank
self.world_size = world_size
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size
self.num_steps = args.num_steps
self.num_epochs = self.num_steps // len(self.data) + 1
chunks = list(range(self.num_steps))
num_chunks = int(self.num_steps / 10)
chunks = np.array_split(chunks, num_chunks)
self.chunks = np.reshape(chunks[10_000::10], (-1))
self.sync_cuda = torch.cuda.is_available()
self.writer = writer
self._load_and_sync_parameters()
self.mp_trainer = MixedPrecisionTrainer(
model=self.model,
use_fp16=self.use_fp16,
fp16_scale_growth=self.fp16_scale_growth,
)
self.save_dir = args.save_dir
self.overwrite = args.overwrite
self.opt = AdamW(
self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
)
if self.resume_step:
self._load_optimizer_state()
if torch.cuda.is_available():
self.device = torch.device(f"cuda:{self.rank}")
self.schedule_sampler_type = "uniform"
self.schedule_sampler = create_named_schedule_sampler(
self.schedule_sampler_type, diffusion
)
self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None
self.use_ddp = True
self.ddp_model = self.model
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
load_state_dict(resume_checkpoint, map_location=dev())
)
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = load_state_dict(opt_checkpoint, map_location=dev())
self.opt.load_state_dict(state_dict)
def _print_stats(self, logger):
if (self.step % 100 == 0 and self.step > 0) and self.rank == 0:
v = logger.get_current().name2val
v = v["loss"]
print("step[{}]: loss[{:0.5f}]".format(self.step + self.resume_step, v))
def _write_to_logger(self, logger):
if (self.step % self.log_interval == 0) and self.rank == 0:
for k, v in logger.get_current().name2val.items():
if k == "loss":
print(
"step[{}]: loss[{:0.5f}]".format(
self.step + self.resume_step, v
)
)
self.writer.add_scalar(f"./Train/{k}", v, self.step)
if k in ["step", "samples"] or "_q" in k:
continue
else:
self.train_platform.report_scalar(
name=k, value=v, iteration=self.step, group_name="Loss"
)
self.writer.add_scalar(f"./Train/{k}", v, self.step)
def run_loop(self):
for _ in range(self.num_epochs):
if self.rank == 0:
prof = profile.Profile()
prof.enable()
for motion, cond in tqdm(self.data, disable=(self.rank != 0)):
if not (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps
):
break
motion = motion.to(self.device)
cond["y"] = {
key: val.to(self.device) if torch.is_tensor(val) else val
for key, val in cond["y"].items()
}
self.run_step(motion, cond)
self._print_stats(logger)
self._write_to_logger(logger)
if (self.step % self.save_interval == 0) and self.rank == 0:
self.save()
self.step += 1
if (self.step == 1000) and self.rank == 0:
prof.disable()
stats = pstats.Stats(prof).strip_dirs().sort_stats("cumtime")
stats.print_stats(10)
if not (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps
):
break
# Save the last checkpoint if it wasn't already saved.
if ((self.step - 1) % self.save_interval != 0) and self.rank == 0:
self.save()
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
self.mp_trainer.optimize(self.opt)
self._anneal_lr()
if self.rank == 0:
self.log_step()
def forward_backward(self, batch, cond):
self.mp_trainer.zero_grad()
for i in range(0, batch.shape[0], self.microbatch):
# Eliminates the microbatch feature
assert i == 0
assert self.microbatch == self.batch_size
micro = batch
micro_cond = cond
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], batch.device)
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
model_kwargs=micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
self.mp_trainer.backward(loss)
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
def ckpt_file_name(self):
return f"model{(self.step+self.resume_step):09d}.pt"
def save(self):
def save_checkpoint(params):
state_dict = self.mp_trainer.master_params_to_state_dict(params)
# Do not save CLIP weights
clip_weights = [e for e in state_dict.keys() if e.startswith("clip_model.")]
for e in clip_weights:
del state_dict[e]
logger.log(f"saving model...")
filename = self.ckpt_file_name()
with bf.BlobFile(bf.join(self.save_dir, filename), "wb") as f:
torch.save(state_dict, f)
save_checkpoint(self.mp_trainer.master_params)
with bf.BlobFile(
bf.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"),
"wb",
) as f:
torch.save(self.opt.state_dict(), f)
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)