File size: 13,677 Bytes
66b7c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

import argparse
import copy
import json
import logging
import os
import sys
import warnings
from typing import Any, Dict

import model.vqvae as vqvae

import numpy as np
import torch
import torch.optim as optim
from data_loaders.get_data import get_dataset_loader, load_local_data
from diffusion.nn import sum_flat
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.vq_parser_utils import train_args

warnings.filterwarnings("ignore")


def cycle(iterable):
    while True:
        for x in iterable:
            yield x


def get_logger(out_dir: str):
    logger = logging.getLogger("Exp")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter("%(asctime)s %(levelname)s %(message)s")

    file_path = os.path.join(out_dir, "run.log")
    file_hdlr = logging.FileHandler(file_path)
    file_hdlr.setFormatter(formatter)

    strm_hdlr = logging.StreamHandler(sys.stdout)
    strm_hdlr.setFormatter(formatter)

    logger.addHandler(file_hdlr)
    logger.addHandler(strm_hdlr)
    return logger


class ModelTrainer:
    def __init__(self, args, net: vqvae.TemporalVertexCodec, logger, writer):
        self.net = net
        self.warm_up_iter = args.warm_up_iter
        self.lr = args.lr
        self.optimizer = optim.AdamW(
            self.net.parameters(),
            lr=args.lr,
            betas=(0.9, 0.99),
            weight_decay=args.weight_decay,
        )
        self.scheduler = torch.optim.lr_scheduler.MultiStepLR(
            self.optimizer, milestones=args.lr_scheduler, gamma=args.gamma
        )
        self.data_format = args.data_format
        self.loss = torch.nn.SmoothL1Loss()
        self.loss_vel = args.loss_vel
        self.commit = args.commit
        self.logger = logger
        self.writer = writer
        self.best_commit = float("inf")
        self.best_recons = float("inf")
        self.best_perplexity = float("inf")
        self.best_iter = 0
        self.out_dir = args.out_dir

    def _masked_l2(self, a, b, mask):
        loss = self._l2_loss(a, b)
        loss = sum_flat(loss * mask.float())
        n_entries = a.shape[1] * a.shape[2]
        non_zero_elements = sum_flat(mask) * n_entries
        mse_loss_val = loss / non_zero_elements
        return mse_loss_val

    def _l2_loss(self, motion_pred, motion_gt, mask=None):
        if mask is not None:
            return self._masked_l2(motion_pred, motion_gt, mask)
        else:
            return self.loss(motion_pred, motion_gt)

    def _vel_loss(self, motion_pred, motion_gt):
        model_results_vel = motion_pred[..., :-1] - motion_pred[..., 1:]
        model_targets_vel = motion_gt[..., :-1] - motion_gt[..., 1:]
        return self.loss(model_results_vel, model_targets_vel)

    def _update_lr_warm_up(self, nb_iter):
        current_lr = self.lr * (nb_iter + 1) / (self.warm_up_iter + 1)
        for param_group in self.optimizer.param_groups:
            param_group["lr"] = current_lr
        return current_lr

    def run_warmup_steps(self, train_loader_iter, skip_step, logger):
        avg_recons, avg_perplexity, avg_commit = 0.0, 0.0, 0.0
        for nb_iter in tqdm(range(1, args.warm_up_iter)):
            current_lr = self._update_lr_warm_up(nb_iter)
            gt_motion, cond = next(train_loader_iter)
            loss_dict = self.run_train_step(gt_motion, cond, skip_step)

            avg_recons += loss_dict["loss_motion"]
            avg_perplexity += loss_dict["perplexity"]
            avg_commit += loss_dict["loss_commit"]

            if nb_iter % args.print_iter == 0:
                avg_recons /= args.print_iter
                avg_perplexity /= args.print_iter
                avg_commit /= args.print_iter

                logger.info(
                    f"Warmup. Iter {nb_iter} :  lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}"
                )

                avg_recons, avg_perplexity, avg_commit = 0.0, 0.0, 0.0

    def run_train_step(
        self, gt_motion: torch.Tensor, cond: torch.Tensor, skip_step: int
    ) -> Dict[str, Any]:
        self.net.train()
        loss_dict = {}
        # run model
        gt_motion = gt_motion.permute(0, 3, 1, 2).squeeze(-1).cuda().float()
        cond["y"] = {
            key: val.to(gt_motion.device) if torch.is_tensor(val) else val
            for key, val in cond["y"].items()
        }
        gt_motion = gt_motion[:, ::skip_step, :]
        pred_motion, loss_commit, perplexity = self.net(gt_motion, mask=None)
        loss_motion = self._l2_loss(pred_motion, gt_motion).mean()
        loss_vel = 0.0
        if self.loss_vel > 0:
            loss_vel = self._vel_loss(pred_motion, gt_motion)
        loss = loss_motion + self.commit * loss_commit + self.loss_vel * loss_vel
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        # record losses
        if self.loss_vel > 0:
            loss_dict["vel"] = loss_vel.item()
        loss_dict["loss"] = loss.item()
        loss_dict["loss_motion"] = loss_motion.item()
        loss_dict["loss_commit"] = loss_commit.item()
        loss_dict["perplexity"] = perplexity.item()
        return loss_dict

    def save_model(self, save_path):
        torch.save(
            {
                "net": self.net.state_dict(),
                "optimizer": self.optimizer.state_dict(),
                "scheduler": self.scheduler,
            },
            save_path,
        )

    def _save_predictions(self, name, unstd_pose, unstd_pred):
        curr_name = os.path.basename(name)
        path = os.path.join(self.out_dir, curr_name)
        for j in range(len(path.split("/")) - 1):
            if not os.path.exists("/".join(path.split("/")[: j + 1])):
                os.system("mkdir " + "/".join(path.split("/")[: j + 1]))
        np.save(os.path.join(self.out_dir, curr_name + "_gt.npy"), unstd_pose)
        np.save(os.path.join(self.out_dir, curr_name + "_pred.npy"), unstd_pred)

    def _log_losses(
        self,
        commit_loss: float,
        recons_loss: float,
        total_perplexity: float,
        nb_iter: int,
        nb_sample: int,
        draw: bool,
        save: bool,
    ) -> None:
        avg_commit = commit_loss / nb_sample
        avg_recons = recons_loss / nb_sample
        avg_perplexity = total_perplexity / nb_sample
        self.logger.info(
            f"Eval. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}"
        )

        if draw:
            self.writer.add_scalar("./Val/Perplexity", avg_perplexity, nb_iter)
            self.writer.add_scalar("./Val/Commit", avg_commit, nb_iter)
            self.writer.add_scalar("./Val/Recons", avg_recons, nb_iter)

        if avg_perplexity < self.best_perplexity:
            msg = f"--> --> \t Perplexity Improved from {self.best_perplexity:.5f} to {avg_perplexity:.5f} !!!"
            self.logger.info(msg)
            self.best_perplexity = avg_perplexity
            if save:
                print(f"saving checkpoint net_best.pth")
                self.save_model(os.path.join(self.out_dir, "net_best.pth"))

        if avg_commit < self.best_commit:
            msg = f"--> --> \t Commit Improved from {self.best_commit:.5f} to {avg_commit:.5f} !!!"
            self.logger.info(msg)
            self.best_commit = avg_commit

        if avg_recons < self.best_recons:
            msg = f"--> --> \t Recons Improved from {self.best_recons:.5f} to {avg_recons:.5f} !!!"
            self.logger.info(msg)
            self.best_recons = avg_recons

    @torch.no_grad()
    def evaluation_vqvae(
        self,
        val_loader,
        nb_iter: int,
        draw: bool = True,
        save: bool = True,
        savenpy: bool = False,
    ) -> None:
        self.net.eval()
        nb_sample = 0
        commit_loss = 0
        recons_loss = 0
        total_perplexity = 0
        for _, batch in enumerate(val_loader):
            motion, cond = batch
            m_length = cond["y"]["lengths"]
            motion = motion.permute(0, 3, 1, 2).squeeze(-1).cuda().float()
            cond["y"] = {
                key: val.to(motion.device) if torch.is_tensor(val) else val
                for key, val in cond["y"].items()
            }
            motion = motion[:, :: val_loader.dataset.step, :].cuda().float()
            bs, seq = motion.shape[0], motion.shape[1]
            pred_pose_eval = torch.zeros((bs, seq, motion.shape[-1])).cuda()
            for i in range(bs):
                curr_gt = motion[i : i + 1, : m_length[i]]
                pred, loss_commit, perplexity = self.net(curr_gt)
                l2_loss = self._l2_loss(pred, curr_gt)
                recons_loss += l2_loss.mean().item()
                commit_loss += loss_commit
                total_perplexity += perplexity
                unstd_pred = val_loader.dataset.inv_transform(
                    pred.detach().cpu().numpy(), self.data_format
                )
                unstd_pose = val_loader.dataset.inv_transform(
                    curr_gt.detach().cpu().numpy(), self.data_format
                )
                if savenpy:
                    self._save_predictions(
                        "b{i:04d}", unstd_pose[:, : m_length[i]], unstd_pred
                    )
                pred_pose_eval[i : i + 1, : m_length[i], :] = pred
            nb_sample += bs

        self._log_losses(
            commit_loss, recons_loss, total_perplexity, nb_iter, nb_sample, draw, save
        )
        if save:
            print(f"saving checkpoint net_last.pth")
            self.save_model(os.path.join(self.out_dir, "net_last.pth"))
            if nb_iter % 100000 == 0:
                print(f"saving checkpoint net_iter_x.pth")
                self.save_model(
                    os.path.join(self.out_dir, "net_iter" + str(nb_iter) + ".pth")
                )


def _load_data_info(args, logger):
    data_dict = load_local_data(args.data_root, audio_per_frame=1600)
    train_loader = get_dataset_loader(
        args=args, data_dict=data_dict, split="train", add_padding=False
    )
    val_loader = get_dataset_loader(
        args=args, data_dict=data_dict, split="val", add_padding=False
    )

    logger.info(
        f"Training on {args.dataname}, motions are with {args.nb_joints} joints"
    )
    train_loader_iter = cycle(train_loader)
    skip_step = train_loader.dataset.step
    return train_loader_iter, val_loader, skip_step


def _load_checkpoint(args, net, logger):
    cp_dir = os.path.dirname(args.resume_pth)
    with open(f"{cp_dir}/args.json") as f:
        trans_args = json.load(f)
    assert trans_args["data_root"] == args.data_root, "data_root doesnt match"
    logger.info("loading checkpoint from {}".format(args.resume_pth))
    ckpt = torch.load(args.resume_pth, map_location="cpu")
    net.load_state_dict(ckpt["net"], strict=True)
    return net


def main(args):
    torch.manual_seed(args.seed)
    os.makedirs(args.out_dir, exist_ok=True)
    logger = get_logger(args.out_dir)
    writer = SummaryWriter(args.out_dir)
    logger.info(json.dumps(vars(args), indent=4, sort_keys=True))

    if args.data_format == "pose":
        args.nb_joints = 104
    elif args.data_format == "face":
        args.nb_joints = 256

    args_path = os.path.join(args.out_dir, "args.json")
    with open(args_path, "w") as fw:
        json.dump(vars(args), fw, indent=4, sort_keys=True)

    if not os.path.exists(args.data_root):
        args.data_root = args.data_root.replace("/home/", "/derived/")

    train_loader_iter, val_loader, skip_step = _load_data_info(args, logger)
    net = vqvae.TemporalVertexCodec(
        n_vertices=args.nb_joints,
        latent_dim=args.output_emb_width,
        categories=args.code_dim,
        residual_depth=args.depth,
    )
    if args.resume_pth:
        net = _load_checkpoint(args, net, logger)
    net.train()
    net.cuda()

    trainer = ModelTrainer(args, net, logger, writer)

    trainer.run_warmup_steps(train_loader_iter, skip_step, logger)
    avg_recons, avg_perplexity, avg_commit = 0.0, 0.0, 0.0
    with torch.no_grad():
        trainer.evaluation_vqvae(
            val_loader, 0, save=(args.total_iter > 0), savenpy=True
        )

    for nb_iter in range(1, args.total_iter + 1):
        gt_motion, cond = next(train_loader_iter)
        loss_dict = trainer.run_train_step(gt_motion, cond, skip_step)
        trainer.scheduler.step()

        avg_recons += loss_dict["loss_motion"]
        avg_perplexity += loss_dict["perplexity"]
        avg_commit += loss_dict["loss_commit"]

        if nb_iter % args.print_iter == 0:
            avg_recons /= args.print_iter
            avg_perplexity /= args.print_iter
            avg_commit /= args.print_iter

            writer.add_scalar("./Train/L1", avg_recons, nb_iter)
            writer.add_scalar("./Train/PPL", avg_perplexity, nb_iter)
            writer.add_scalar("./Train/Commit", avg_commit, nb_iter)

            logger.info(
                f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons.  {avg_recons:.5f}"
            )

            avg_recons, avg_perplexity, avg_commit = (0.0, 0.0, 0.0)

        if nb_iter % args.eval_iter == 0:
            trainer.evaluation_vqvae(
                val_loader, nb_iter, save=(args.total_iter > 0), savenpy=True
            )


if __name__ == "__main__":
    args = train_args()
    main(args)