File size: 6,305 Bytes
99a5e1e
b269c5d
 
 
 
99a5e1e
b269c5d
99a5e1e
b269c5d
 
 
 
 
 
 
 
 
 
f2adbf5
 
99a5e1e
 
b269c5d
 
 
 
 
 
 
 
 
 
f2adbf5
 
b269c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2adbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b269c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
title: LLM Structured Output Docker
emoji: πŸ€–
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
license: mit
short_description: Get structured JSON responses from LLM using Docker
tags:
- llama-cpp
- gguf
- json-schema
- structured-output
- llm
- docker
- gradio
- grammar
- gbnf
---

# πŸ€– LLM Structured Output (Docker Version)

Dockerized application for getting structured responses from local GGUF language models in specified JSON format.

## ✨ Key Features

- **Docker containerized** for easy deployment on HuggingFace Spaces
- **Local GGUF model support** via llama-cpp-python
- **Optimized for containers** with configurable resources
- **JSON schema support** for structured output
- **πŸ”— Grammar-based structured output** (GBNF) for precise JSON generation
- **Dual generation modes**: Grammar mode and Schema guidance mode
- **Gradio web interface** for convenient interaction
- **REST API** for integration with other applications
- **Memory efficient** with GGUF quantized models

## πŸš€ Deployment on HuggingFace Spaces

This version is specifically designed for HuggingFace Spaces with Docker SDK:

1. Clone this repository
2. Push to HuggingFace Spaces with `sdk: docker` in README.md
3. The application will automatically build and deploy

## 🐳 Local Docker Usage

### Build the image:
```bash
docker build -t llm-structured-output .
```

### Run the container:
```bash
docker run -p 7860:7860 -e MODEL_REPO="lmstudio-community/gemma-3n-E4B-it-text-GGUF" llm-structured-output
```

### With custom configuration:
```bash
docker run -p 7860:7860 \
  -e MODEL_REPO="lmstudio-community/gemma-3n-E4B-it-text-GGUF" \
  -e MODEL_FILENAME="gemma-3n-E4B-it-Q8_0.gguf" \
  -e N_CTX="4096" \
  -e MAX_NEW_TOKENS="512" \
  llm-structured-output
```

## 🌐 Application Access

- **Web interface**: http://localhost:7860
- **API**: Available through the same port
- **Health check**: http://localhost:7860/health (when API mode is enabled)

## πŸ“ Environment Variables

Configure the application using environment variables:

| Variable | Default | Description |
|----------|---------|-------------|
| `MODEL_REPO` | `lmstudio-community/gemma-3n-E4B-it-text-GGUF` | HuggingFace model repository |
| `MODEL_FILENAME` | `gemma-3n-E4B-it-Q8_0.gguf` | Model file name |
| `N_CTX` | `4096` | Context window size |
| `N_GPU_LAYERS` | `0` | GPU layers (0 for CPU-only) |
| `N_THREADS` | `4` | CPU threads |
| `MAX_NEW_TOKENS` | `256` | Maximum response length |
| `TEMPERATURE` | `0.1` | Generation temperature |
| `HUGGINGFACE_TOKEN` | `` | HF token for private models |

## πŸ“‹ Usage Examples

### Example JSON Schema:
```json
{
  "type": "object",
  "properties": {
    "summary": {"type": "string"},
    "sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]},
    "confidence": {"type": "number", "minimum": 0, "maximum": 1}
  },
  "required": ["summary", "sentiment"]
}
```

### Example Prompt:
```
Analyze this review: "The product exceeded my expectations! Great quality and fast delivery."
```

## πŸ”§ Docker Optimizations

This Docker version includes several optimizations:

- **Reduced memory usage** with smaller context window and batch sizes
- **CPU-optimized** configuration by default
- **Efficient layer caching** for faster builds
- **Security**: Runs as non-root user
- **Multi-stage build** capabilities for production

## πŸ—οΈ Architecture

- **Base Image**: Python 3.10 slim
- **ML Backend**: llama-cpp-python with OpenBLAS
- **Web Interface**: Gradio 4.x
- **API**: FastAPI with automatic documentation
- **Model Storage**: Downloaded on first run to `/app/models/`

## πŸ’‘ Performance Tips

1. **Memory**: Start with smaller models (7B or less)
2. **CPU**: Adjust `N_THREADS` based on available cores
3. **Context**: Reduce `N_CTX` if experiencing memory issues
4. **Batch size**: Lower `N_BATCH` for memory-constrained environments

## πŸ”— Grammar Mode (GBNF)

This project now supports **Grammar-based Structured Output** using GBNF (Grammar in Backus-Naur Form) for more precise JSON generation:

### ✨ What is Grammar Mode?

Grammar Mode automatically converts your JSON Schema into a GBNF grammar that constrains the model to generate only valid JSON matching your schema structure. This provides:

- **100% valid JSON** - No parsing errors
- **Schema compliance** - Guaranteed structure adherence  
- **Consistent output** - Reliable format every time
- **Better performance** - Fewer retry attempts needed

### πŸŽ›οΈ Usage

**In Gradio Interface:**
- Toggle the "πŸ”— Use Grammar (GBNF) Mode" checkbox
- Enabled by default for best results

**In API:**
```json
{
  "prompt": "Your prompt here",
  "json_schema": { your_schema },
  "use_grammar": true
}
```

**In Python:**
```python
result = llm_client.generate_structured_response(
    prompt="Your prompt",
    json_schema=schema,
    use_grammar=True  # Enable grammar mode
)
```

### πŸ”„ Mode Comparison

| Feature | Grammar Mode | Schema Guidance Mode |
|---------|-------------|---------------------|
| JSON Validity | 100% guaranteed | High, but may need parsing |
| Schema Compliance | Strict enforcement | Guidance-based |
| Speed | Faster (single pass) | May need retries |
| Flexibility | Structured | More creative freedom |
| Best for | APIs, data extraction | Creative content with structure |

### πŸ› οΈ Supported Schema Features

- βœ… Objects with required/optional properties
- βœ… Arrays with typed items
- βœ… String enums 
- βœ… Numbers and integers
- βœ… Booleans
- βœ… Nested objects and arrays
- ⚠️ Complex conditionals (simplified)

## πŸ” Troubleshooting

### Container fails to start:
- Check available memory (minimum 4GB recommended)
- Verify model repository accessibility
- Ensure proper environment variable formatting

### Model download issues:
- Check internet connectivity in container
- Verify `HUGGINGFACE_TOKEN` for private models
- Ensure sufficient disk space

### Performance issues:
- Reduce `N_CTX` and `MAX_NEW_TOKENS`
- Adjust `N_THREADS` to match CPU cores
- Consider using smaller/quantized models

## πŸ“„ License

MIT License - see LICENSE file for details.

---

For more information about HuggingFace Spaces Docker configuration, see: https://huggingface.co/docs/hub/spaces-config-reference