File size: 15,783 Bytes
b269c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import json
import os
import gradio as gr
from typing import Optional, Dict, Any, Union
from PIL import Image
from pydantic import BaseModel
import logging
from config import Config

# Try to import llama_cpp with fallback
try:
    from llama_cpp import Llama
    LLAMA_CPP_AVAILABLE = True
except ImportError as e:
    print(f"Warning: llama-cpp-python not available: {e}")
    LLAMA_CPP_AVAILABLE = False
    Llama = None

# Try to import huggingface_hub
try:
    from huggingface_hub import hf_hub_download
    HUGGINGFACE_HUB_AVAILABLE = True
except ImportError as e:
    print(f"Warning: huggingface_hub not available: {e}")
    HUGGINGFACE_HUB_AVAILABLE = False
    hf_hub_download = None

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class StructuredOutputRequest(BaseModel):
    prompt: str
    image: Optional[str] = None  # base64 encoded image
    json_schema: Dict[str, Any]

class LLMClient:
    def __init__(self):
        """
        Initialize client for working with local GGUF model via llama-cpp-python
        """
        self.model_path = Config.get_model_path()
        logger.info(f"Using model: {self.model_path}")
        
        self.llm = None
        
        self._initialize_model()
    
    def _download_model_if_needed(self) -> str:
        """Download model from Hugging Face if it doesn't exist locally"""
        if os.path.exists(self.model_path):
            logger.info(f"Model already exists at: {self.model_path}")
            return self.model_path
        
        # If model doesn't exist and we're in production (Docker), 
        # it means the build process failed or model is in wrong location
        if os.getenv('DOCKER_CONTAINER', 'false').lower() == 'true':
            # Let's check common locations where model might be
            alternative_paths = [
                f"/app/models/{Config.MODEL_FILENAME}",
                f"./models/{Config.MODEL_FILENAME}",
                f"/models/{Config.MODEL_FILENAME}",
                f"/app/{Config.MODEL_FILENAME}"
            ]
            
            for alt_path in alternative_paths:
                if os.path.exists(alt_path):
                    logger.info(f"Found model at alternative location: {alt_path}")
                    return alt_path
            
            # List what's actually in the models directory
            models_dir = "/app/models"
            if os.path.exists(models_dir):
                files = os.listdir(models_dir)
                logger.error(f"Contents of {models_dir}: {files}")
            else:
                logger.error(f"Directory {models_dir} does not exist")
            
            # Try to download as fallback
            logger.warning("Model not found in expected locations, attempting download...")
        
        if not HUGGINGFACE_HUB_AVAILABLE:
            raise ImportError("huggingface_hub is not available. Please install it to download models.")
        
        logger.info(f"Downloading model {Config.MODEL_REPO}/{Config.MODEL_FILENAME}...")
        
        # Create models directory if it doesn't exist
        models_dir = Config.get_models_dir()
        os.makedirs(models_dir, exist_ok=True)
        
        try:
            # Download model
            model_path = hf_hub_download(
                repo_id=Config.MODEL_REPO,
                filename=Config.MODEL_FILENAME,
                local_dir=models_dir,
                token=Config.HUGGINGFACE_TOKEN if Config.HUGGINGFACE_TOKEN else None
            )
            
            logger.info(f"Model downloaded to: {model_path}")
            return model_path
        except Exception as e:
            logger.error(f"Failed to download model: {e}")
            raise
    
    def _initialize_model(self):
        """Initialize local GGUF model"""
        try:
            if not LLAMA_CPP_AVAILABLE:
                raise ImportError("llama-cpp-python is not available. Please check installation.")
            
            logger.info("Loading local model...")
            
            # Download model if needed
            model_path = self._download_model_if_needed()
            
            # Verify model file exists and is readable
            if not os.path.exists(model_path):
                raise FileNotFoundError(f"Model file not found: {model_path}")
            
            # Check file size to ensure it's not corrupted
            file_size = os.path.getsize(model_path)
            if file_size < 1024 * 1024:  # Less than 1MB is suspicious for GGUF model
                raise ValueError(f"Model file seems corrupted or incomplete. Size: {file_size} bytes")
            
            logger.info(f"Model file verified. Size: {file_size / (1024**3):.2f} GB")
            
            # Initialize Llama model with enhanced error handling
            logger.info("Initializing Llama model...")
            self.llm = Llama(
                model_path=model_path,
                n_ctx=Config.N_CTX,
                n_batch=Config.N_BATCH,
                n_gpu_layers=Config.N_GPU_LAYERS,
                use_mlock=Config.USE_MLOCK,
                use_mmap=Config.USE_MMAP,
                vocab_only=False,
                f16_kv=Config.F16_KV,
                logits_all=False,
                embedding=False,
                n_threads=Config.N_THREADS,
                last_n_tokens_size=64,
                lora_base=None,
                lora_path=None,
                seed=Config.SEED,
                verbose=True  # Enable verbose for debugging
            )
            
            logger.info("Model successfully loaded and initialized")
            
            # Test model with a simple prompt to verify it's working
            logger.info("Testing model with simple prompt...")
            test_response = self.llm("Hello", max_tokens=1, temperature=0.1)
            logger.info("Model test successful")
            
        except Exception as e:
            logger.error(f"Error initializing model: {e}")
            # Provide more specific error information
            if "Failed to load model from file" in str(e):
                logger.error("This error usually indicates:")
                logger.error("1. Model file is corrupted or incomplete")
                logger.error("2. llama-cpp-python version is incompatible with the model")
                logger.error("3. Insufficient memory to load the model")
                logger.error(f"4. Model path: {self.model_path}")
            raise
    
    def _validate_json_schema(self, schema: str) -> Dict[str, Any]:
        """Validate and parse JSON schema"""
        try:
            parsed_schema = json.loads(schema)
            return parsed_schema
        except json.JSONDecodeError as e:
            raise ValueError(f"Invalid JSON schema: {e}")
    
    def _format_prompt_with_schema(self, prompt: str, json_schema: Dict[str, Any]) -> str:
        """
        Format prompt for structured output generation
        """
        schema_str = json.dumps(json_schema, ensure_ascii=False, indent=2)
        
        formatted_prompt = f"""User: {prompt}

Please respond in strict accordance with the following JSON schema:

```json
{schema_str}
```

Return ONLY valid JSON without additional comments or explanations."""
        
        return formatted_prompt
    
    def generate_structured_response(self, 
                                   prompt: str, 
                                   json_schema: Union[str, Dict[str, Any]], 
                                   image: Optional[Image.Image] = None) -> Dict[str, Any]:
        """
        Generate structured response from local GGUF model
        """
        try:
            # Validate and parse JSON schema
            if isinstance(json_schema, str):
                parsed_schema = self._validate_json_schema(json_schema)
            else:
                parsed_schema = json_schema
            
            # Format prompt
            formatted_prompt = self._format_prompt_with_schema(prompt, parsed_schema)
            
            # Warning about images (not supported in this implementation)
            if image is not None:
                logger.warning("Image processing is not supported with this local model")
            
            # Generate response
            logger.info("Generating response...")
            
            response = self.llm(
                formatted_prompt,
                max_tokens=Config.MAX_NEW_TOKENS,
                temperature=Config.TEMPERATURE,
                stop=["User:", "\n\n"],
                echo=False
            )
            
            # Extract generated text
            generated_text = response['choices'][0]['text']
            
            # Attempt to parse JSON response
            try:
                # Find JSON in response
                json_start = generated_text.find('{')
                json_end = generated_text.rfind('}') + 1
                
                if json_start != -1 and json_end > json_start:
                    json_str = generated_text[json_start:json_end]
                    parsed_response = json.loads(json_str)
                    return {
                        "success": True,
                        "data": parsed_response,
                        "raw_response": generated_text
                    }
                else:
                    return {
                        "error": "Could not find JSON in model response",
                        "raw_response": generated_text
                    }
                    
            except json.JSONDecodeError as e:
                return {
                    "error": f"JSON parsing error: {e}",
                    "raw_response": generated_text
                }
                
        except Exception as e:
            logger.error(f"Unexpected error: {e}")
            return {
                "error": f"Generation error: {str(e)}"
            }

# Initialize client
logger.info("Initializing LLM client...")
try:
    llm_client = LLMClient()
    logger.info("LLM client successfully initialized")
except Exception as e:
    logger.error(f"Error initializing LLM client: {e}")
    llm_client = None

def process_request(prompt: str, 
                   json_schema: str, 
                   image: Optional[Image.Image] = None) -> str:
    """
    Process request through Gradio interface
    """
    if llm_client is None:
        return json.dumps({
            "error": "LLM client not initialized",
            "details": "Check logs for detailed error information"
        }, ensure_ascii=False, indent=2)
    
    if not prompt.strip():
        return json.dumps({"error": "Prompt cannot be empty"}, ensure_ascii=False, indent=2)
    
    if not json_schema.strip():
        return json.dumps({"error": "JSON schema cannot be empty"}, ensure_ascii=False, indent=2)
    
    result = llm_client.generate_structured_response(prompt, json_schema, image)
    return json.dumps(result, ensure_ascii=False, indent=2)

# Examples for demonstration
example_schema = """{
  "type": "object",
  "properties": {
    "summary": {
      "type": "string",
      "description": "Brief summary of the response"
    },
    "sentiment": {
      "type": "string",
      "enum": ["positive", "negative", "neutral"],
      "description": "Emotional tone"
    },
    "confidence": {
      "type": "number",
      "minimum": 0,
      "maximum": 1,
      "description": "Confidence level in the response"
    },
    "keywords": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "description": "Key words"
    }
  },
  "required": ["summary", "sentiment", "confidence"]
}"""

example_prompt = "Analyze the following text and provide a structured assessment: 'The company's new product received enthusiastic user reviews. Sales exceeded all expectations by 150%.'"

def create_gradio_interface():
    """Create Gradio interface"""
    
    with gr.Blocks(title="LLM Structured Output", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🤖 LLM with Structured Output")
        gr.Markdown(f"Application for generating structured responses using model **{Config.MODEL_REPO}/{Config.MODEL_FILENAME}**")
        
        # Show model status
        if llm_client is None:
            gr.Markdown("⚠️ **Warning**: Model not loaded. Check configuration and restart the application.")
        else:
            gr.Markdown("✅ **Status**: Model successfully loaded and ready to work")
        
        with gr.Row():
            with gr.Column():
                prompt_input = gr.Textbox(
                    label="Prompt for model",
                    placeholder="Enter your request...",
                    lines=5,
                    value=example_prompt
                )
                
                image_input = gr.Image(
                    label="Image (optional, for multimodal models)",
                    type="pil"
                )
                
                schema_input = gr.Textbox(
                    label="JSON schema for response structure",
                    placeholder="Enter JSON schema...",
                    lines=15,
                    value=example_schema
                )
                
                submit_btn = gr.Button("Generate Response", variant="primary")
                
            with gr.Column():
                output = gr.Textbox(
                    label="Structured Response",
                    lines=20,
                    interactive=False
                )
        
        submit_btn.click(
            fn=process_request,
            inputs=[prompt_input, schema_input, image_input],
            outputs=output
        )
        
        # Examples
        gr.Markdown("## 📋 Usage Examples")
        
        examples = gr.Examples(
            examples=[
                [
                    "Describe today's weather in New York",
                    """{
  "type": "object",
  "properties": {
    "temperature": {"type": "number"},
    "description": {"type": "string"},
    "humidity": {"type": "number"}
  }
}""",
                    None
                ],
                [
                    "Create a Python learning plan for one month",
                    """{
  "type": "object",
  "properties": {
    "weeks": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "week_number": {"type": "integer"},
          "topics": {"type": "array", "items": {"type": "string"}},
          "practice_hours": {"type": "number"}
        }
      }
    },
    "total_hours": {"type": "number"}
  }
}""",
                    None
                ]
            ],
            inputs=[prompt_input, schema_input, image_input]
        )
        
        # Model information
        gr.Markdown(f"""
## ℹ️ Model Information

- **Model**: {Config.MODEL_REPO}/{Config.MODEL_FILENAME}
- **Local path**: {Config.MODEL_PATH}
- **Context window**: {Config.N_CTX} tokens
- **Batch size**: {Config.N_BATCH}
- **GPU layers**: {Config.N_GPU_LAYERS if Config.N_GPU_LAYERS >= 0 else "All"}
- **CPU threads**: {Config.N_THREADS}
- **Maximum response length**: {Config.MAX_NEW_TOKENS} tokens
- **Temperature**: {Config.TEMPERATURE}
- **Memory lock**: {"Enabled" if Config.USE_MLOCK else "Disabled"}
- **Memory mapping**: {"Enabled" if Config.USE_MMAP else "Disabled"}

💡 **Tip**: Use clear and specific JSON schemas for better results.
        """)
    
    return demo

if __name__ == "__main__":
    # Create and launch Gradio interface
    demo = create_gradio_interface()
    demo.launch(
        server_name=Config.HOST,
        server_port=Config.GRADIO_PORT,
        share=False,
        debug=True
    )