import PIL.Image as Image import gradio as gr from ultralytics import ASSETS, YOLO model = YOLO("/home/jad-tounsi/Desktop/YAZ+/Yield/model_eval/weights/best.pt") def predict_image(img, conf_threshold, iou_threshold): results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") ], outputs=gr.Image(type="pil", label="Result"), title="My Yield | 🌱", description="Estimate the amount of plants per year", examples=[ [ASSETS / "/home/jad-tounsi/Desktop/YAZ+/YAZ+ GPT/pages/asssets/test.jpg", 0.25, 0.45], [ASSETS / "/home/jad-tounsi/Desktop/YAZ+/YAZ+ GPT/pages/asssets/test2.jpg", 0.25, 0.45], [ASSETS / "/home/jad-tounsi/Desktop/YAZ+/YAZ+ GPT/pages/asssets/test3.jpg", 0.25, 0.45] ] ) if __name__ == '__main__': iface.launch()