Spaces:
Sleeping
Sleeping
import PIL.Image as Image | |
import gradio as gr | |
from ultralytics import ASSETS, YOLO | |
model = YOLO("best.pt") | |
def predict_image(img, conf_threshold, iou_threshold): | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
# Assuming 'results' has a property or method to get detected labels count | |
# If not directly available, you might need to parse the results accordingly | |
fruits_count = sum(1 for _ in results if _.label == "fruit") # Example, adjust based on actual results structure | |
# Only handling the last result for simplicity, adjust according to your needs | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
caption = f"Detected fruits: {fruits_count}" # Modify this line according to the actual object you're detecting | |
return im, caption | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") | |
], | |
outputs=[gr.Image(type="pil", label="Result"), gr.Textbox(label="Caption")], | |
title="My Yield | 🌱", | |
description="Estimate the amount of plants per year", | |
) | |
if __name__ == '__main__': | |
iface.launch() | |