yaz / app.py
luxmorocco's picture
Update app.py
ca4894c verified
raw
history blame
1.44 kB
import PIL.Image as Image
import gradio as gr
from ultralytics import ASSETS, YOLO
model = YOLO("best.pt")
def predict_image(img, conf_threshold, iou_threshold):
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
# Assuming 'results' has a property or method to get detected labels count
# If not directly available, you might need to parse the results accordingly
fruits_count = sum(1 for _ in results if _.label == "fruit") # Example, adjust based on actual results structure
# Only handling the last result for simplicity, adjust according to your needs
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
caption = f"Detected fruits: {fruits_count}" # Modify this line according to the actual object you're detecting
return im, caption
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
],
outputs=[gr.Image(type="pil", label="Result"), gr.Textbox(label="Caption")],
title="My Yield | 🌱",
description="Estimate the amount of plants per year",
)
if __name__ == '__main__':
iface.launch()