File size: 11,802 Bytes
a6258d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from gradio_client import Client, handle_file
from pathlib import Path
import gradio as gr
import numpy as np
from sklearn.cluster import KMeans
import trimesh
import plotly.graph_objects as go
import plotly.express as px
import polars as pl
from scipy.spatial import cKDTree

from constants import BLOCK_SIZES, LEGO_COLORS_RGB


def get_client() -> Client:
    return Client("TencentARC/InstantMesh")  # TODO: enable global client.


def generate_mesh(img: Path | str, seed: int = 42) -> str:
    """Takes a img (path or bytes) and returns a str (path) to the generated .obj-file"""

    client = get_client()
    result = client.predict(
        input_image=handle_file(img), do_remove_background=True, api_name="/preprocess"
    )
    result = client.predict(
        input_image=handle_file(result),
        sample_steps=75,
        sample_seed=seed,
        api_name="/generate_mvs",
    )
    result = client.predict(api_name="/make3d")
    obj_file = result[0]

    return obj_file


# ---- STEP 4: SELECT VOXEL SIZE ----
def voxelize(mesh_path: str | Path, resolution: str):
    resolution = {"Small (16)": 16, "Medium (32)": 32, "Large (64)": 64}[resolution]

    mesh = trimesh.load(mesh_path)
    bounds = mesh.bounds
    voxel_size = (bounds[1] - bounds[0]).max() / resolution  # pitch
    voxels = mesh.voxelized(pitch=voxel_size)
    colors = tree_knearest_colors(1, mesh, voxels)  # one is faster and good enough.
    mesh_state = {"voxels": voxels, "mesh": mesh, "colors": colors}

    return mesh_state


def build_scene(mesh, voxels):
    """Writes trimesh scene to .obj file"""
    voxels_mesh = voxels.as_boxes().apply_translation((1.5, 0, 0))
    scene = trimesh.Scene([mesh, voxels_mesh])
    scene.export("scene.obj")

    return "scene.obj"


# ---- STEP 5: VISUALIZE VOXELS ----
def quantize_colors(colors, k: int = 16):
    """
    quantize colors by fitting into 16 unique colors.
    """
    original_colors = np.array(colors)[:, :3]

    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(original_colors)

    # Get the representative colors
    representative_colors = kmeans.cluster_centers_.astype(int)

    # Transform the original colors to representative colors
    transformed_colors = representative_colors[kmeans.labels_]

    return transformed_colors


def lego_colors(colors):
    """
    quantize colors by fitting into 16 unique colors.
    """
    original_colors = np.array(colors)[:, :3]
    # Use scipy cdist to calculate euclidean distance between original and LEGO_C..
    from scipy.spatial.distance import cdist

    distances = cdist(original_colors, LEGO_COLORS_RGB, metric="sqeuclidean")
    distances = np.sqrt(distances)
    closest = np.argmin(distances, axis=1)

    return LEGO_COLORS_RGB[closest]


def pl_color_to_str():
    color_arr = pl.col("color").arr
    return pl.format(
        "rgb({},{},{})", color_arr.get(0), color_arr.get(1), color_arr.get(2)
    )


def visualize_voxels(mesh_state):
    # Step 1: Extract Colors
    # colors = tree_knearest_colors(5, mesh_state["mesh"], mesh_state["voxels"])
    # Step 2: Lego'ify Colors
    colors = mesh_state["colors"]
    # colors = quantize_colors(colors)
    # Step 3: Visualize
    voxels = mesh_state["voxels"]
    # Convert occupied_voxel_indices to a Polars DataFrame (if not already done)
    df = pl.from_numpy(voxels.sparse_indices, schema=["x", "z", "y"])
    df = df.with_columns(color=pl.Series(colors)).with_columns(
        color_str=pl_color_to_str()
    )

    return (
        px.scatter_3d(
            df,
            x="x",
            y="y",
            z="z",
            color="color_str",
            color_discrete_map="identity",
            symbol=["square"] * len(df),
            symbol_map="identity",
        ),
        df,
    )


def tree_knearest_colors(k: int, mesh, voxels):
    tree = cKDTree(mesh.vertices)
    distances, vertex_indices = tree.query(voxels.points, k=k)

    if k == 1:
        return mesh.visual.vertex_colors[vertex_indices]

    voxel_colors = []

    for nearest_indices in vertex_indices:
        neighbor_colors = mesh.visual.vertex_colors[nearest_indices]
        average_color = np.mean(neighbor_colors, axis=0).astype(np.uint8)
        voxel_colors.append(average_color)

    return voxel_colors


# ---- STEP 6: ADJUST BRIGHTNESS ----
# def adjust_brightness(image, brightness):
# adjusted_image = cv2.convertScaleAbs(image, alpha=brightness)
# return adjusted_image


# ---- STEP 8: LEGO BUILD ANIMATION ----
def merge_into_bricks(grouped_df: pl.DataFrame, BLOCK_SIZES) -> pl.DataFrame:
    color_str = grouped_df[0, "color_str"]
    z_val = grouped_df[0, "z"]

    xy_grid = np.zeros(
        (grouped_df["x"].max() + 1, grouped_df["y"].max() + 1), dtype=bool
    )
    xy_grid[grouped_df["x"], grouped_df["y"]] = 1
    out_rows = []
    grouped_df = grouped_df.sort(by=["x", "y"])
    coords = {(x, y) for x, y in grouped_df[["x", "y"]].to_numpy()}

    while coords:
        (x0, y0) = coords.pop()
        coords.add((x0, y0))  # reinsert until placed

        placed = False
        for width, height in BLOCK_SIZES:
            if x0 + width > xy_grid.shape[0] or y0 + height > xy_grid.shape[1]:
                continue
            if np.all(xy_grid[x0 : x0 + width, y0 : y0 + height] == 1):
                place_block(x0, y0, width, height, coords)
                xy_grid[x0 : x0 + width, y0 : y0 + height] = 0  # remove from xygrid
                out_rows.append((color_str, z_val, x0, y0, width, height))
                placed = True
                break

        if not placed:
            # fallback to 1x1
            coords.remove((x0, y0))
            out_rows.append((color_str, z_val, x0, y0, 1, 1))

    return pl.DataFrame(
        {
            "color_str": [row[0] for row in out_rows],
            "z": [row[1] for row in out_rows],
            "x": [row[2] for row in out_rows],
            "y": [row[3] for row in out_rows],
            "width": [row[4] for row in out_rows],
            "height": [row[5] for row in out_rows],
        }
    )


def can_place_block(x0, y0, w, h, coords):
    for xx in range(x0, x0 + w):
        for yy in range(y0, y0 + h):
            if (xx, yy) not in coords:
                return False
    return True


def place_block(x0, y0, w, h, coords):
    for xx in range(x0, x0 + w):
        for yy in range(y0, y0 + h):
            coords.remove((xx, yy))


# Function to generate vertices for a rectangular prism (brick)
def create_brick(x, y, z, width, height, depth=1, color="gray"):
    return go.Mesh3d(
        x=[x, x + width, x + width, x, x, x + width, x + width, x],  # X-coordinates
        y=[y, y, y + height, y + height, y, y, y + height, y + height],  # Y-coordinates
        z=[z, z, z, z, z + depth, z + depth, z + depth, z + depth],  # Z-coordinates
        color=color,
        alphahull=-1,
        i=[7, 0, 0, 0, 4, 4, 6, 6, 4, 0, 3, 2],
        j=[3, 4, 1, 2, 5, 6, 5, 2, 0, 1, 6, 3],
        k=[0, 7, 2, 3, 6, 7, 1, 1, 5, 5, 7, 6],
        name=f"Z={z}",
    )


def get_range(series: pl.Series) -> tuple[int, int]:
    return series.min(), series.max()


def animate_lego_build(df_state):
    # Colors already merged.
    df: pl.DataFrame = df_state
    df = df.with_columns(color=quantize_colors(df["color"])).with_columns(
        color_str=pl_color_to_str()
    )
    # Quantize Colors... Need to split string and use..
    merged_df = df.group_by("color_str", "z").map_groups(
        lambda grp: merge_into_bricks(grp, BLOCK_SIZES)
    )

    fig = go.Figure()
    fig.update_layout(
        scene=dict(
            xaxis=dict(range=get_range(df["x"]), autorange=False),
            yaxis=dict(range=get_range(df["y"]), autorange=False),
            zaxis=dict(range=get_range(df["z"]), autorange=False),
        )
    )

    # Add each brick to the plot
    for z in merged_df["z"].unique().sort():
        for row in merged_df.filter(pl.col("z") == z).iter_rows(named=True):
            fig.add_trace(
                create_brick(
                    x=row["x"],
                    y=row["y"],
                    z=row["z"],
                    width=row["width"],
                    height=row["height"],
                    color=row["color_str"],
                )
            )
        # frame_jpgs.append(f"frame_z_{z}.jpg")
        # if not Path(frame_jpgs[-1]).exists():
        #    fig.write_image(frame_jpgs[-1])

    return fig  # , frame_jpgs


# ---- GRADIO UI ----
with gr.Blocks() as demo:
    gr.Markdown("# 🧱 **Image 2 Lego Builder** 🧱")

    # Step 1: Upload Image and Build Mesh
    with gr.Column(variant="compact"):
        with gr.Row():
            image_input = gr.Image(
                type="filepath", height="250px", label="Upload an Image"
            )
            with gr.Column(variant="compact"):
                seed = gr.Number(label="Seed", value=42)
                # Potentially add color options.
                voxel_size_selector = gr.Dropdown(
                    ["Small (16)", "Medium (32)", "Large (64)"],
                    value="Medium (32)",
                    label="Select Voxel Size",
                )
        with gr.Row():
            build_button = gr.Button("Generate Mesh")
            voxelize_button = gr.Button("Generate Voxels")

    # Visualizations...
    # Mesh | Voxel Color | Voxel Lego Bricks+Color
    with gr.Row():
        mesh_info_display = gr.Model3D(
            label="Mesh Visualization", height="250px", value="mesh.obj"
        )
        voxel_color_display = gr.Plot(label="Colorized Voxels")
        voxel_bricks = gr.Plot(label="Lego Bricks")
        brick_animation = gr.Gallery(label="Build Animation")

    mesh_state = gr.State(value={})

    build_button.click(
        generate_mesh, inputs=[image_input, seed], outputs=mesh_info_display
    )

    # Step 4: Select Voxel Size
    voxelize_button.click(
        voxelize,
        inputs=[mesh_info_display, voxel_size_selector],
        outputs=[mesh_state],
    )
    df_state = gr.State()
    mesh_state.change(
        visualize_voxels,
        inputs=[mesh_state],
        outputs=[voxel_color_display, df_state],
    )

    df_state.change(animate_lego_build, inputs=[df_state], outputs=[voxel_bricks])

    def anim_pltly(df):
        df = df.with_columns(color=quantize_colors(df["color"])).with_columns(
            color_str=pl_color_to_str()
        )
        # Quantize Colors... Need to split string and use..
        merged_df = df.group_by("color_str", "z").map_groups(
            lambda grp: merge_into_bricks(grp, BLOCK_SIZES)
        )

        fig = go.Figure()
        fig.update_layout(
            scene=dict(
                xaxis=dict(range=get_range(df["x"]), autorange=False),
                yaxis=dict(range=get_range(df["y"]), autorange=False),
                zaxis=dict(range=get_range(df["z"]), autorange=False),
            )
        )
        frame_jpgs = []
        # Add each brick to the plot
        for z in merged_df["z"].unique().sort():
            for row in merged_df.filter(pl.col("z") == z).iter_rows(named=True):
                fig.add_trace(
                    create_brick(
                        x=row["x"],
                        y=row["y"],
                        z=row["z"],
                        width=row["width"],
                        height=row["height"],
                        color=row["color_str"],
                    )
                )
            frame_jpgs.append(f"frame_z_{z}.jpg")
            if not Path(frame_jpgs[-1]).exists():
                fig.write_image(frame_jpgs[-1])

        return frame_jpgs

    # TODO: add to generate layer-by-layer
    # df_state.change(anim_pltly, inputs=[df_state], outputs=[brick_animation])

# Launch the app
demo.launch(share=True, debug=True)