Update deepfloydif.py
Browse files- deepfloydif.py +39 -55
deepfloydif.py
CHANGED
@@ -10,12 +10,8 @@ import pathlib
|
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
deepfloydif_client = Client("huggingface-projects/IF", HF_TOKEN)
|
12 |
|
13 |
-
BOT_USER_ID = (
|
14 |
-
|
15 |
-
)
|
16 |
-
DEEPFLOYDIF_CHANNEL_ID = (
|
17 |
-
1121834257959092234 if os.getenv("TEST_ENV", False) else 1119313215675973714
|
18 |
-
)
|
19 |
|
20 |
|
21 |
def deepfloydif_stage_1_inference(prompt):
|
@@ -27,9 +23,9 @@ def deepfloydif_stage_1_inference(prompt):
|
|
27 |
custom_timesteps_1 = "smart50"
|
28 |
number_of_inference_steps = 50
|
29 |
(
|
30 |
-
|
31 |
stage_1_param_path,
|
32 |
-
|
33 |
) = deepfloydif_client.predict(
|
34 |
prompt,
|
35 |
negative_prompt,
|
@@ -40,10 +36,10 @@ def deepfloydif_stage_1_inference(prompt):
|
|
40 |
number_of_inference_steps,
|
41 |
api_name="/generate64",
|
42 |
)
|
43 |
-
return [
|
44 |
|
45 |
|
46 |
-
def deepfloydif_stage_2_inference(index,
|
47 |
"""Upscales one of the images from deepfloydif_stage_1_inference based on the chosen index"""
|
48 |
selected_index_for_stage_2 = index
|
49 |
seed_2 = 0
|
@@ -51,7 +47,7 @@ def deepfloydif_stage_2_inference(index, stage_1_result_path):
|
|
51 |
custom_timesteps_2 = "smart50"
|
52 |
number_of_inference_steps_2 = 50
|
53 |
result_path = deepfloydif_client.predict(
|
54 |
-
|
55 |
selected_index_for_stage_2,
|
56 |
seed_2,
|
57 |
guidance_scale_2,
|
@@ -68,64 +64,56 @@ async def react_1234(reaction_emojis, combined_image_dfif):
|
|
68 |
await combined_image_dfif.add_reaction(emoji)
|
69 |
|
70 |
|
71 |
-
def load_image(png_files,
|
72 |
"""Opens images as variables so we can combine them later"""
|
73 |
results = []
|
74 |
for file in png_files:
|
75 |
-
png_path = os.path.join(
|
76 |
results.append(Image.open(png_path))
|
77 |
return results
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
async def deepfloydif_stage_1(interaction, prompt, client):
|
81 |
"""DeepfloydIF command (generate images with realistic text using slash commands)"""
|
82 |
try:
|
83 |
-
# global BOT_USER_ID
|
84 |
-
# global DEEPFLOYDIF_CHANNEL_ID
|
85 |
if interaction.user.id != BOT_USER_ID:
|
86 |
if interaction.channel.id == DEEPFLOYDIF_CHANNEL_ID:
|
87 |
if os.environ.get("TEST_ENV") == "True":
|
88 |
-
print("
|
89 |
await interaction.response.send_message("Working on it!")
|
90 |
channel = interaction.channel
|
91 |
# interaction.response message can't be used to create a thread, so we create another message
|
92 |
message = await channel.send("DeepfloydIF Thread")
|
93 |
-
thread = await message.create_thread(
|
94 |
-
name=f"{prompt}", auto_archive_duration=60
|
95 |
-
)
|
96 |
await thread.send(
|
97 |
-
"[DISCLAIMER: HuggingBot is a **highly experimental** beta feature; Additional information on the
|
98 |
-
|
99 |
-
await thread.send(
|
100 |
-
f"{interaction.user.mention} Generating images in thread, can take ~1 minute..."
|
101 |
)
|
|
|
102 |
|
103 |
loop = asyncio.get_running_loop()
|
104 |
-
result = await loop.run_in_executor(
|
105 |
-
|
106 |
-
|
107 |
-
stage_1_results = result[0]
|
108 |
-
stage_1_result_path = result[2]
|
109 |
|
110 |
-
partial_path = pathlib.Path(
|
111 |
-
png_files = list(glob.glob(f"{
|
112 |
|
113 |
if png_files:
|
114 |
-
|
115 |
-
if os.environ.get("TEST_ENV") == "True":
|
116 |
-
print("Combining images for deepfloydif_stage_1")
|
117 |
-
images = load_image(png_files, stage_1_results)
|
118 |
-
combined_image = Image.new(
|
119 |
-
"RGB", (images[0].width * 2, images[0].height * 2)
|
120 |
-
)
|
121 |
-
combined_image.paste(images[0], (0, 0))
|
122 |
-
combined_image.paste(images[1], (images[0].width, 0))
|
123 |
-
combined_image.paste(images[2], (0, images[0].height))
|
124 |
-
combined_image.paste(images[3], (images[0].width, images[0].height))
|
125 |
-
combined_image_path = os.path.join(
|
126 |
-
stage_1_results, f"{partial_path}.png"
|
127 |
-
)
|
128 |
-
combined_image.save(combined_image_path)
|
129 |
if os.environ.get("TEST_ENV") == "True":
|
130 |
print("Images combined for deepfloydif_stage_1")
|
131 |
with open(combined_image_path, "rb") as f:
|
@@ -136,9 +124,7 @@ async def deepfloydif_stage_1(interaction, prompt, client):
|
|
136 |
emoji_list = ["↖️", "↗️", "↙️", "↘️"]
|
137 |
await react_1234(emoji_list, combined_image_dfif)
|
138 |
else:
|
139 |
-
await thread.send(
|
140 |
-
f"{interaction.user.mention} No PNG files were found, cannot post them!"
|
141 |
-
)
|
142 |
except Exception as e:
|
143 |
print(f"Error: {e}")
|
144 |
|
@@ -169,18 +155,18 @@ async def deepfloydif_stage_2_react_check(reaction, user):
|
|
169 |
index = 2
|
170 |
elif emoji == "↘️":
|
171 |
index = 3
|
172 |
-
|
173 |
thread = reaction.message.channel
|
174 |
await deepfloydif_stage_2(
|
175 |
index,
|
176 |
-
|
177 |
thread,
|
178 |
)
|
179 |
except Exception as e:
|
180 |
print(f"Error: {e} (known error, does not cause issues, low priority)")
|
181 |
|
182 |
|
183 |
-
async def deepfloydif_stage_2(index: int,
|
184 |
"""upscaling function for images generated using /deepfloydif"""
|
185 |
try:
|
186 |
if os.environ.get("TEST_ENV") == "True":
|
@@ -198,13 +184,11 @@ async def deepfloydif_stage_2(index: int, stage_1_result_path, thread):
|
|
198 |
# run blocking function in executor
|
199 |
loop = asyncio.get_running_loop()
|
200 |
result_path = await loop.run_in_executor(
|
201 |
-
None, deepfloydif_stage_2_inference, index,
|
202 |
)
|
203 |
|
204 |
with open(result_path, "rb") as f:
|
205 |
-
await thread.send(
|
206 |
-
"Here is the upscaled image!", file=discord.File(f, "result.png")
|
207 |
-
)
|
208 |
await thread.edit(archived=True)
|
209 |
except Exception as e:
|
210 |
print(f"Error: {e}")
|
|
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
deepfloydif_client = Client("huggingface-projects/IF", HF_TOKEN)
|
12 |
|
13 |
+
BOT_USER_ID = 1086256910572986469 if os.getenv("TEST_ENV", False) else 1102236653545861151
|
14 |
+
DEEPFLOYDIF_CHANNEL_ID = 1121834257959092234 if os.getenv("TEST_ENV", False) else 1119313215675973714
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def deepfloydif_stage_1_inference(prompt):
|
|
|
23 |
custom_timesteps_1 = "smart50"
|
24 |
number_of_inference_steps = 50
|
25 |
(
|
26 |
+
stage_1_images,
|
27 |
stage_1_param_path,
|
28 |
+
path_for_stage_2_upscaling,
|
29 |
) = deepfloydif_client.predict(
|
30 |
prompt,
|
31 |
negative_prompt,
|
|
|
36 |
number_of_inference_steps,
|
37 |
api_name="/generate64",
|
38 |
)
|
39 |
+
return [stage_1_images, stage_1_param_path, path_for_stage_2_upscaling]
|
40 |
|
41 |
|
42 |
+
def deepfloydif_stage_2_inference(index, path_for_stage_2_upscaling):
|
43 |
"""Upscales one of the images from deepfloydif_stage_1_inference based on the chosen index"""
|
44 |
selected_index_for_stage_2 = index
|
45 |
seed_2 = 0
|
|
|
47 |
custom_timesteps_2 = "smart50"
|
48 |
number_of_inference_steps_2 = 50
|
49 |
result_path = deepfloydif_client.predict(
|
50 |
+
path_for_stage_2_upscaling,
|
51 |
selected_index_for_stage_2,
|
52 |
seed_2,
|
53 |
guidance_scale_2,
|
|
|
64 |
await combined_image_dfif.add_reaction(emoji)
|
65 |
|
66 |
|
67 |
+
def load_image(png_files, stage_1_images):
|
68 |
"""Opens images as variables so we can combine them later"""
|
69 |
results = []
|
70 |
for file in png_files:
|
71 |
+
png_path = os.path.join(stage_1_images, file)
|
72 |
results.append(Image.open(png_path))
|
73 |
return results
|
74 |
|
75 |
|
76 |
+
def combine_images(png_files, stage_1_images, partial_path):
|
77 |
+
if os.environ.get("TEST_ENV") == "True":
|
78 |
+
print("Combining images for deepfloydif_stage_1")
|
79 |
+
images = load_image(png_files, stage_1_images)
|
80 |
+
combined_image = Image.new("RGB", (images[0].width * 2, images[0].height * 2))
|
81 |
+
combined_image.paste(images[0], (0, 0))
|
82 |
+
combined_image.paste(images[1], (images[0].width, 0))
|
83 |
+
combined_image.paste(images[2], (0, images[0].height))
|
84 |
+
combined_image.paste(images[3], (images[0].width, images[0].height))
|
85 |
+
combined_image_path = os.path.join(stage_1_images, f"{partial_path}.png")
|
86 |
+
combined_image.save(combined_image_path)
|
87 |
+
|
88 |
+
|
89 |
async def deepfloydif_stage_1(interaction, prompt, client):
|
90 |
"""DeepfloydIF command (generate images with realistic text using slash commands)"""
|
91 |
try:
|
|
|
|
|
92 |
if interaction.user.id != BOT_USER_ID:
|
93 |
if interaction.channel.id == DEEPFLOYDIF_CHANNEL_ID:
|
94 |
if os.environ.get("TEST_ENV") == "True":
|
95 |
+
print("Safety checks passed for deepfloydif_stage_1")
|
96 |
await interaction.response.send_message("Working on it!")
|
97 |
channel = interaction.channel
|
98 |
# interaction.response message can't be used to create a thread, so we create another message
|
99 |
message = await channel.send("DeepfloydIF Thread")
|
100 |
+
thread = await message.create_thread(name=f"{prompt}", auto_archive_duration=60)
|
|
|
|
|
101 |
await thread.send(
|
102 |
+
"[DISCLAIMER: HuggingBot is a **highly experimental** beta feature; Additional information on the"
|
103 |
+
" DeepfloydIF model can be found here: https://huggingface.co/spaces/DeepFloyd/IF"
|
|
|
|
|
104 |
)
|
105 |
+
await thread.send(f"{interaction.user.mention} Generating images in thread, can take ~1 minute...")
|
106 |
|
107 |
loop = asyncio.get_running_loop()
|
108 |
+
result = await loop.run_in_executor(None, deepfloydif_stage_1_inference, prompt)
|
109 |
+
stage_1_images = result[0]
|
110 |
+
path_for_stage_2_upscaling = result[2]
|
|
|
|
|
111 |
|
112 |
+
partial_path = pathlib.Path(path_for_stage_2_upscaling).name
|
113 |
+
png_files = list(glob.glob(f"{stage_1_images}/**/*.png"))
|
114 |
|
115 |
if png_files:
|
116 |
+
combine_images(png_files, stage_1_images, partial_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if os.environ.get("TEST_ENV") == "True":
|
118 |
print("Images combined for deepfloydif_stage_1")
|
119 |
with open(combined_image_path, "rb") as f:
|
|
|
124 |
emoji_list = ["↖️", "↗️", "↙️", "↘️"]
|
125 |
await react_1234(emoji_list, combined_image_dfif)
|
126 |
else:
|
127 |
+
await thread.send(f"{interaction.user.mention} No PNG files were found, cannot post them!")
|
|
|
|
|
128 |
except Exception as e:
|
129 |
print(f"Error: {e}")
|
130 |
|
|
|
155 |
index = 2
|
156 |
elif emoji == "↘️":
|
157 |
index = 3
|
158 |
+
path_for_stage_2_upscaling = full_path
|
159 |
thread = reaction.message.channel
|
160 |
await deepfloydif_stage_2(
|
161 |
index,
|
162 |
+
path_for_stage_2_upscaling,
|
163 |
thread,
|
164 |
)
|
165 |
except Exception as e:
|
166 |
print(f"Error: {e} (known error, does not cause issues, low priority)")
|
167 |
|
168 |
|
169 |
+
async def deepfloydif_stage_2(index: int, path_for_stage_2_upscaling, thread):
|
170 |
"""upscaling function for images generated using /deepfloydif"""
|
171 |
try:
|
172 |
if os.environ.get("TEST_ENV") == "True":
|
|
|
184 |
# run blocking function in executor
|
185 |
loop = asyncio.get_running_loop()
|
186 |
result_path = await loop.run_in_executor(
|
187 |
+
None, deepfloydif_stage_2_inference, index, path_for_stage_2_upscaling
|
188 |
)
|
189 |
|
190 |
with open(result_path, "rb") as f:
|
191 |
+
await thread.send("Here is the upscaled image!", file=discord.File(f, "result.png"))
|
|
|
|
|
192 |
await thread.edit(archived=True)
|
193 |
except Exception as e:
|
194 |
print(f"Error: {e}")
|