Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
|
4 |
-
# We
|
5 |
-
|
6 |
-
|
7 |
-
# Your Hugging Face API key
|
8 |
-
HF_API_KEY = "hf_1234"
|
9 |
|
10 |
# Model endpoints on Hugging Face
|
11 |
MODEL_ENDPOINTS = {
|
@@ -14,32 +12,34 @@ MODEL_ENDPOINTS = {
|
|
14 |
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
|
15 |
}
|
16 |
|
17 |
-
# Query a specific model using OpenAI-compatible ChatCompletion
|
18 |
def query_model(prompt, model_endpoint):
|
|
|
|
|
|
|
|
|
|
|
19 |
openai.api_key = HF_API_KEY
|
20 |
openai.api_base = model_endpoint
|
|
|
21 |
response = openai.ChatCompletion.create(
|
22 |
-
model="
|
23 |
messages=[{"role": "user", "content": prompt}],
|
24 |
max_tokens=512,
|
25 |
-
temperature=0.7
|
26 |
)
|
27 |
return response.choices[0].message["content"]
|
28 |
|
29 |
def chat_with_models(user_input, history):
|
30 |
-
# Let each model provide its own contribution
|
31 |
responses = []
|
32 |
for model_name, endpoint in MODEL_ENDPOINTS.items():
|
33 |
model_response = query_model(user_input, endpoint)
|
34 |
responses.append(f"**{model_name}**: {model_response}")
|
35 |
-
|
36 |
-
# Combine all responses in a single answer
|
37 |
combined_answer = "\n\n".join(responses)
|
38 |
history.append((user_input, combined_answer))
|
39 |
return history, history
|
40 |
|
41 |
with gr.Blocks() as demo:
|
42 |
-
gr.Markdown("# Multi-LLM Chatbot using Hugging Face Inference API")
|
43 |
|
44 |
chatbot = gr.Chatbot()
|
45 |
msg = gr.Textbox(label="Your Message")
|
@@ -48,7 +48,7 @@ with gr.Blocks() as demo:
|
|
48 |
def clear_chat():
|
49 |
return [], []
|
50 |
|
51 |
-
msg.submit(chat_with_models, [msg, chatbot], [chatbot, chatbot])
|
52 |
clear.click(fn=clear_chat, outputs=[chatbot, chatbot])
|
53 |
|
54 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import openai
|
4 |
|
5 |
+
# We'll read the Hugging Face API key from environment variables (using Spaces "secrets").
|
6 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
|
|
|
|
|
|
7 |
|
8 |
# Model endpoints on Hugging Face
|
9 |
MODEL_ENDPOINTS = {
|
|
|
12 |
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
|
13 |
}
|
14 |
|
|
|
15 |
def query_model(prompt, model_endpoint):
|
16 |
+
"""
|
17 |
+
Query a specific model using OpenAI-compatible ChatCompletion.
|
18 |
+
Since the Hugging Face Inference API is OpenAI-compatible here,
|
19 |
+
we just set openai.api_base to the model's endpoint.
|
20 |
+
"""
|
21 |
openai.api_key = HF_API_KEY
|
22 |
openai.api_base = model_endpoint
|
23 |
+
|
24 |
response = openai.ChatCompletion.create(
|
25 |
+
model="placeholder-model",
|
26 |
messages=[{"role": "user", "content": prompt}],
|
27 |
max_tokens=512,
|
28 |
+
temperature=0.7,
|
29 |
)
|
30 |
return response.choices[0].message["content"]
|
31 |
|
32 |
def chat_with_models(user_input, history):
|
|
|
33 |
responses = []
|
34 |
for model_name, endpoint in MODEL_ENDPOINTS.items():
|
35 |
model_response = query_model(user_input, endpoint)
|
36 |
responses.append(f"**{model_name}**: {model_response}")
|
|
|
|
|
37 |
combined_answer = "\n\n".join(responses)
|
38 |
history.append((user_input, combined_answer))
|
39 |
return history, history
|
40 |
|
41 |
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("# Multi-LLM Chatbot using Hugging Face Inference API (OpenAI-compatible)")
|
43 |
|
44 |
chatbot = gr.Chatbot()
|
45 |
msg = gr.Textbox(label="Your Message")
|
|
|
48 |
def clear_chat():
|
49 |
return [], []
|
50 |
|
51 |
+
msg.submit(fn=chat_with_models, inputs=[msg, chatbot], outputs=[chatbot, chatbot])
|
52 |
clear.click(fn=clear_chat, outputs=[chatbot, chatbot])
|
53 |
|
54 |
demo.launch()
|