choupijiang / app.py
luminoussg's picture
Update app.py
f863e48 verified
raw
history blame
6.71 kB
import gradio as gr
import os
import threading
from datetime import datetime
from typing import List, Dict, Any, Generator
from session_manager import SessionManager
from huggingface_hub import InferenceClient
from textbox_with_upload import TextboxWithUpload
# Initialize session manager and get HF API key
session_manager = SessionManager()
HF_API_KEY = os.getenv("HF_API_KEY")
# Check Gradio version
import gradio as gr
print(f"Gradio version: {gr.__version__}")
# Model endpoints configuration
MODEL_ENDPOINTS = {
"Qwen2.5-72B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-72B-Instruct",
"Llama3.3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Llama-3.3-70B-Instruct",
"Qwen2.5-Coder-32B-Instruct": "https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Coder-32B-Instruct",
}
def query_model(model_name: str, messages: List[Dict[str, str]]) -> Generator[str, None, None]:
"""Query a single model with the chat history and stream the response"""
endpoint = MODEL_ENDPOINTS[model_name]
# Build full conversation history for context
conversation = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
# System prompt configuration
system_prompts = {
"Qwen2.5-72B-Instruct": "Collaborate with other experts. Previous discussion:\n{conversation}",
"Llama3.3-70B-Instruct": (
"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n"
f"Build upon this discussion:\n{conversation}<|eot_id|>\n"
"<|start_header_id|>assistant<|end_header_id|>\nMy contribution:"
),
"Qwen2.5-Coder-32B-Instruct": (
f"<|im_start|>system\nTechnical discussion context:\n{conversation}<|im_end|>\n"
"<|im_start|>assistant\nTechnical perspective:"
)
}
client = InferenceClient(base_url=endpoint, token=HF_API_KEY)
try:
messages = [
{"role": "system", "content": system_prompts[model_name].format(conversation=conversation)},
{"role": "user", "content": "Continue the expert discussion"}
]
stream = client.chat.completions.create(
messages=messages,
stream=True,
max_tokens=2048,
temperature=0.5,
top_p=0.7
)
for chunk in stream:
content = chunk.choices[0].delta.content or ""
yield content
except Exception as e:
yield f"{model_name} error: {str(e)}"
def respond(message: str, history: List[List[str]], session_id: str) -> Generator[str, None, None]:
"""Handle sequential model responses with context preservation and streaming"""
# Load or initialize session
session = session_manager.load_session(session_id)
if not isinstance(session, dict) or "history" not in session:
session = {"history": []}
# Build context from session history
messages = []
for entry in session["history"]:
if entry["type"] == "user":
messages.append({"role": "user", "content": entry["content"]})
else:
messages.append({"role": "assistant", "content": f"{entry['model']}: {entry['content']}"})
# Add current message
messages.append({"role": "user", "content": message})
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
# Model responses
model_names = ["Qwen2.5-Coder-32B-Instruct", "Qwen2.5-72B-Instruct", "Llama3.3-70B-Instruct"]
model_colors = ["πŸ”΅", "🟣", "🟑"]
responses = {}
# Initialize responses
for model_name in model_names:
responses[model_name] = ""
# Stream responses from each model
for i, model_name in enumerate(model_names):
yield f"{model_colors[i]} {model_name} is thinking..."
full_response = ""
for chunk in query_model(model_name, messages):
full_response += chunk
yield f"{model_colors[i]} **{model_name}**\n{full_response}"
# Update session history and messages
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "assistant",
"model": model_name,
"content": full_response
})
messages.append({"role": "assistant", "content": f"{model_name}: {full_response}"})
responses[model_name] = full_response
# Save final session state
session_manager.save_session(session_id, session)
# Return final combined response (optional)
combined_response = ""
for i, model_name in enumerate(model_names):
combined_response += f"{model_colors[i]} **{model_name}**\n{responses[model_name]}\n\n"
yield combined_response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Multi-LLM Collaboration Chat")
with gr.Row():
session_id = gr.State(session_manager.create_session)
new_session = gr.Button("πŸ”„ New Session")
chatbot = gr.Chatbot(height=600)
msg = TextboxWithUpload(label="Message")
save_history = gr.Checkbox(label="Save Conversation History", value=True)
def on_new_session():
new_id = session_manager.create_session()
return new_id, []
def user(message, history, session_id, save_history):
if save_history:
session = session_manager.load_session(session_id)
session["history"].append({
"timestamp": datetime.now().isoformat(),
"type": "user",
"content": message
})
session_manager.save_session(session_id, session)
# Handle file upload
if message.startswith("Uploaded file:"):
message = f"I've uploaded a file: {message.split(':', 1)[1].strip()}"
return "", history + [[message, None]]
def bot(history, session_id):
if history and history[-1][1] is None:
message = history[-1][0]
for response in respond(message, history[:-1], session_id):
history[-1][1] = response
yield history
def process_upload(file):
return f"Uploaded file: {file.name}"
# Set up event handlers for message submission, file upload, and new session creation
msg.submit(user, [msg, chatbot, session_id, save_history], [msg, chatbot]).then(
bot, [chatbot, session_id], [chatbot]
)
msg.upload_button.upload(process_upload, msg.upload_button, msg) # Handle file uploads
new_session.click(on_new_session, None, [session_id, chatbot])
if __name__ == "__main__":
demo.launch(share=True)