Spaces:
Sleeping
Sleeping
Luke Stanley
commited on
Commit
·
233efeb
1
Parent(s):
feeb679
RunPod Mixtral JSON output test
Browse files- runpod.dockerfile +9 -0
- runpod_handler.py +80 -4
runpod.dockerfile
CHANGED
|
@@ -10,6 +10,15 @@ ENV HF_HOME="/runpod-volume/.cache/huggingface/"
|
|
| 10 |
RUN python3.11 -m pip install --upgrade pip && \
|
| 11 |
python3.11 -m pip install runpod==1.6.0
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
ADD runpod_handler.py .
|
| 14 |
|
| 15 |
CMD python3.11 -u /runpod_handler.py
|
|
|
|
| 10 |
RUN python3.11 -m pip install --upgrade pip && \
|
| 11 |
python3.11 -m pip install runpod==1.6.0
|
| 12 |
|
| 13 |
+
RUN python3.11 -m pip install pytest cmake \
|
| 14 |
+
scikit-build setuptools pydantic-settings \
|
| 15 |
+
huggingface_hub hf_transfer \
|
| 16 |
+
pydantic pydantic_settings \
|
| 17 |
+
llama-cpp-python
|
| 18 |
+
|
| 19 |
+
# Install llama-cpp-python (build with cuda)
|
| 20 |
+
ENV CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
| 21 |
+
RUN python3.11 -m pip install llama-cpp-python --upgrade --no-cache-dir --force-reinstall
|
| 22 |
ADD runpod_handler.py .
|
| 23 |
|
| 24 |
CMD python3.11 -u /runpod_handler.py
|
runpod_handler.py
CHANGED
|
@@ -1,9 +1,82 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
| 3 |
import runpod
|
| 4 |
|
|
|
|
| 5 |
# If your handler runs inference on a model, load the model here.
|
| 6 |
# You will want models to be loaded into memory before starting serverless.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def handler(job):
|
|
@@ -12,7 +85,10 @@ def handler(job):
|
|
| 12 |
|
| 13 |
name = job_input.get('name', 'World')
|
| 14 |
|
| 15 |
-
return f"Hello, {name}!"
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
runpod.serverless.start({"handler": handler})
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from os import environ as env
|
| 3 |
+
from typing import Any, Dict, Union
|
| 4 |
+
from llama_cpp import Llama, LlamaGrammar
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
import runpod
|
| 7 |
|
| 8 |
+
|
| 9 |
# If your handler runs inference on a model, load the model here.
|
| 10 |
# You will want models to be loaded into memory before starting serverless.
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
small_repo = "TheBloke/phi-2-GGUF"
|
| 13 |
+
small_model="phi-2.Q2_K.gguf"
|
| 14 |
+
big_repo = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
| 15 |
+
big_model = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"
|
| 16 |
+
LLM_MODEL_PATH =hf_hub_download(
|
| 17 |
+
repo_id=big_repo,
|
| 18 |
+
filename=big_model,
|
| 19 |
+
)
|
| 20 |
+
print(f"Model downloaded to {LLM_MODEL_PATH}")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
in_memory_llm = None
|
| 25 |
+
|
| 26 |
+
N_GPU_LAYERS = env.get("N_GPU_LAYERS", -1) # Default to -1, which means use all layers if available
|
| 27 |
+
CONTEXT_SIZE = int(env.get("CONTEXT_SIZE", 2048))
|
| 28 |
+
USE_HTTP_SERVER = env.get("USE_HTTP_SERVER", "false").lower() == "true"
|
| 29 |
+
MAX_TOKENS = int(env.get("MAX_TOKENS", 1000))
|
| 30 |
+
TEMPERATURE = float(env.get("TEMPERATURE", 0.3))
|
| 31 |
+
|
| 32 |
+
class Movie(BaseModel):
|
| 33 |
+
title: str = Field(..., title="The title of the movie")
|
| 34 |
+
year: int = Field(..., title="The year the movie was released")
|
| 35 |
+
director: str = Field(..., title="The director of the movie")
|
| 36 |
+
genre: str = Field(..., title="The genre of the movie")
|
| 37 |
+
plot: str = Field(..., title="Plot summary of the movie")
|
| 38 |
+
|
| 39 |
+
JSON_EXAMPLE_MOVIE = """
|
| 40 |
+
{ "title": "The Matrix", "year": 1999, "director": "The Wachowskis", "genre": "Science Fiction", "plot":"Prgrammer realises he lives in simulation and plays key role."
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
if in_memory_llm is None:
|
| 44 |
+
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.")
|
| 45 |
+
in_memory_llm = Llama(model_path=LLM_MODEL_PATH, n_ctx=CONTEXT_SIZE, n_gpu_layers=N_GPU_LAYERS, verbose=True)
|
| 46 |
+
|
| 47 |
+
def llm_stream_sans_network(
|
| 48 |
+
prompt: str, pydantic_model_class=Movie, return_pydantic_object=False
|
| 49 |
+
) -> Union[str, Dict[str, Any]]:
|
| 50 |
+
schema = pydantic_model_class.model_json_schema()
|
| 51 |
+
|
| 52 |
+
# Optional example field from schema, is not needed for the grammar generation
|
| 53 |
+
if "example" in schema:
|
| 54 |
+
del schema["example"]
|
| 55 |
+
|
| 56 |
+
json_schema = json.dumps(schema)
|
| 57 |
+
grammar = LlamaGrammar.from_json_schema(json_schema)
|
| 58 |
+
|
| 59 |
+
stream = in_memory_llm(
|
| 60 |
+
prompt,
|
| 61 |
+
max_tokens=MAX_TOKENS,
|
| 62 |
+
temperature=TEMPERATURE,
|
| 63 |
+
grammar=grammar,
|
| 64 |
+
stream=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
output_text = ""
|
| 68 |
+
for chunk in stream:
|
| 69 |
+
result = chunk["choices"][0]
|
| 70 |
+
print(result["text"], end='', flush=True)
|
| 71 |
+
output_text = output_text + result["text"]
|
| 72 |
+
|
| 73 |
+
print('\n')
|
| 74 |
+
|
| 75 |
+
if return_pydantic_object:
|
| 76 |
+
model_object = pydantic_model_class.model_validate_json(output_text)
|
| 77 |
+
return model_object
|
| 78 |
+
else:
|
| 79 |
+
return output_text
|
| 80 |
|
| 81 |
|
| 82 |
def handler(job):
|
|
|
|
| 85 |
|
| 86 |
name = job_input.get('name', 'World')
|
| 87 |
|
| 88 |
+
#return f"Hello, {name}!"
|
| 89 |
+
return llm_stream_sans_network(
|
| 90 |
+
f"""You need to output JSON objects describing movies.
|
| 91 |
+
For example for the movie called: `The Matrix`: Output: {JSON_EXAMPLE_MOVIE}
|
| 92 |
+
Instruct: Output the JSON object for the movie: `{name}` Output: """)
|
| 93 |
|
| 94 |
runpod.serverless.start({"handler": handler})
|