Spaces:
Sleeping
Sleeping
| import json | |
| from typing import Any, Dict, Union | |
| import requests | |
| from llama_cpp import json_schema_to_gbnf | |
| # The llama_cpp Python HTTP server communicates with the AI model, similar | |
| # to the OpenAI API but adds a unique "grammar" parameter. | |
| # The real OpenAI API has other ways to set the output format. | |
| URL = "http://localhost:5834/v1/chat/completions" | |
| def llm_streaming( | |
| prompt: str, pydantic_model_class, return_pydantic_object=False | |
| ) -> Union[str, Dict[str, Any]]: | |
| schema = pydantic_model_class.model_json_schema() | |
| # Optional example field from schema, is not needed for the grammar generation | |
| if "example" in schema: | |
| del schema["example"] | |
| json_schema = json.dumps(schema) | |
| grammar = json_schema_to_gbnf(json_schema) | |
| payload = { | |
| "stream": True, | |
| "max_tokens": 1000, | |
| "grammar": grammar, | |
| "temperature": 0.7, | |
| "messages": [{"role": "user", "content": prompt}], | |
| } | |
| headers = { | |
| "Content-Type": "application/json", | |
| } | |
| response = requests.post( | |
| URL, | |
| headers=headers, | |
| json=payload, | |
| stream=True, | |
| ) | |
| output_text = "" | |
| for chunk in response.iter_lines(): | |
| if chunk: | |
| chunk = chunk.decode("utf-8") | |
| if chunk.startswith("data: "): | |
| chunk = chunk.split("data: ")[1] | |
| if chunk.strip() == "[DONE]": | |
| break | |
| chunk = json.loads(chunk) | |
| new_token = chunk.get("choices")[0].get("delta").get("content") | |
| if new_token: | |
| output_text = output_text + new_token | |
| print(new_token, sep="", end="", flush=True) | |
| if return_pydantic_object: | |
| model_object = pydantic_model_class.model_validate_json(output_text) | |
| return model_object | |
| else: | |
| json_output = json.loads(output_text) | |
| return json_output | |
| def replace_text(template: str, replacements: dict) -> str: | |
| for key, value in replacements.items(): | |
| template = template.replace(f"{{{key}}}", value) | |
| return template | |
| def query_ai_prompt(prompt, replacements, model_class): | |
| prompt = replace_text(prompt, replacements) | |
| # print('prompt') | |
| # print(prompt) | |
| return llm_streaming(prompt, model_class) | |
| def calculate_overall_score(faithfulness, spiciness): | |
| baseline_weight = 0.8 | |
| overall = faithfulness + (1 - baseline_weight) * spiciness * faithfulness | |
| return overall | |