Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Commit 
							
							·
						
						73d9a01
	
1
								Parent(s):
							
							0b6543b
								
add gradio app
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,274 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from datasets import disable_caching, load_dataset
         | 
| 3 | 
            +
            from transformer_ranker import TransformerRanker, prepare_popular_models
         | 
| 4 | 
            +
            import traceback
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from utils import (
         | 
| 7 | 
            +
                DISABLED_BUTTON_VARIANT, ENABLED_BUTTON_VARIANT, CSS, HEADLINE, FOOTER,
         | 
| 8 | 
            +
                EmbeddingProgressTracker, check_dataset_exists, check_dataset_is_loaded,
         | 
| 9 | 
            +
                compute_ratio, ensure_one_lm_selected, get_dataset_info
         | 
| 10 | 
            +
            )
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            disable_caching()
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            THEME = "pseudolab/huggingface-korea-theme"
         | 
| 15 | 
            +
            DEFAULT_SAMPLES = 1000
         | 
| 16 | 
            +
            MAX_SAMPLES = 5000
         | 
| 17 | 
            +
            LANGUAGE_MODELS = prepare_popular_models('base') + prepare_popular_models('large')
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # Add a tiny model for demonstration on CPU
         | 
| 20 | 
            +
            LANGUAGE_MODELS = ['prajjwal1/bert-tiny'] + list(dict.fromkeys(LANGUAGE_MODELS))
         | 
| 21 | 
            +
            LANGUAGE_MODELS.insert(LANGUAGE_MODELS.index("bert-base-cased") + 1, "bert-base-uncased")
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # Preselect some small models
         | 
| 24 | 
            +
            DEFAULT_MODELS = [
         | 
| 25 | 
            +
                "prajjwal1/bert-tiny", "google/electra-small-discriminator", 
         | 
| 26 | 
            +
                "distilbert-base-cased", "sentence-transformers/all-MiniLM-L12-v2"
         | 
| 27 | 
            +
            ]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            with gr.Blocks(css=CSS, theme=THEME) as demo:
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                ########## STEP 1: Load the Dataset ##########
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                gr.Markdown(HEADLINE)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                gr.Markdown("## Step 1: Load a Dataset")
         | 
| 37 | 
            +
                with gr.Group():
         | 
| 38 | 
            +
                    dataset = gr.State(None)
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                    dataset_name = gr.Textbox(
         | 
| 41 | 
            +
                        label="Enter the name of your dataset",
         | 
| 42 | 
            +
                        placeholder="Examples: trec, ag_news, sst2, conll2003, leondz/wnut_17",
         | 
| 43 | 
            +
                        max_lines=1,
         | 
| 44 | 
            +
                    )
         | 
| 45 | 
            +
                    select_dataset_button = gr.Button(
         | 
| 46 | 
            +
                        value="Load dataset", interactive=False, variant=DISABLED_BUTTON_VARIANT
         | 
| 47 | 
            +
                    )
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    # Activate the "Load dataset" button if dataset was found
         | 
| 50 | 
            +
                    dataset_name.change(
         | 
| 51 | 
            +
                        check_dataset_exists, inputs=dataset_name, outputs=select_dataset_button
         | 
| 52 | 
            +
                    )
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                gr.Markdown(
         | 
| 55 | 
            +
                    "*The number of samples that can be used in this demo is limited to save resources. "
         | 
| 56 | 
            +
                    "To run an estimate on the full dataset, check out the "
         | 
| 57 | 
            +
                    "[library](https://github.com/flairNLP/transformer-ranker).*"
         | 
| 58 | 
            +
                )
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                ########## Step 1.1 Dataset preprocessing ##########
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                with gr.Accordion("Dataset settings", open=False) as dataset_config:
         | 
| 63 | 
            +
                    with gr.Row() as dataset_details:
         | 
| 64 | 
            +
                        dataset_name_label = gr.Label("", label="Dataset Name")
         | 
| 65 | 
            +
                        num_samples = gr.State(0)
         | 
| 66 | 
            +
                        num_samples_label = gr.Label("", label="Number of Samples")
         | 
| 67 | 
            +
                        num_samples.change(
         | 
| 68 | 
            +
                            lambda x: str(x), inputs=[num_samples], outputs=[num_samples_label]
         | 
| 69 | 
            +
                        )
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    with gr.Row():
         | 
| 72 | 
            +
                        text_column = gr.Dropdown("", label="Text Column")
         | 
| 73 | 
            +
                        text_pair_column = gr.Dropdown("", label="Text Pair Column")
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    with gr.Row():
         | 
| 76 | 
            +
                        label_column = gr.Dropdown("", label="Label Column")
         | 
| 77 | 
            +
                        task_category = gr.Dropdown("", label="Task Type")
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    with gr.Group():
         | 
| 80 | 
            +
                        downsample_ratio = gr.State(0.0)
         | 
| 81 | 
            +
                        num_samples_to_use = gr.Slider(
         | 
| 82 | 
            +
                            20, MAX_SAMPLES, label="Samples to use", value=DEFAULT_SAMPLES, step=1
         | 
| 83 | 
            +
                        )
         | 
| 84 | 
            +
                        downsample_ratio_label = gr.Label("", label="Ratio of dataset to use")
         | 
| 85 | 
            +
                        downsample_ratio.change(
         | 
| 86 | 
            +
                            lambda x: f"{x:.1%}",
         | 
| 87 | 
            +
                            inputs=[downsample_ratio],
         | 
| 88 | 
            +
                            outputs=[downsample_ratio_label],
         | 
| 89 | 
            +
                        )
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                        num_samples_to_use.change(
         | 
| 92 | 
            +
                            compute_ratio,
         | 
| 93 | 
            +
                            inputs=[num_samples_to_use, num_samples],
         | 
| 94 | 
            +
                            outputs=downsample_ratio,
         | 
| 95 | 
            +
                        )
         | 
| 96 | 
            +
                        num_samples.change(
         | 
| 97 | 
            +
                            compute_ratio,
         | 
| 98 | 
            +
                            inputs=[num_samples_to_use, num_samples],
         | 
| 99 | 
            +
                            outputs=downsample_ratio,
         | 
| 100 | 
            +
                        )
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                # Download the dataset and show details
         | 
| 103 | 
            +
                def select_dataset(dataset_name):
         | 
| 104 | 
            +
                    try:
         | 
| 105 | 
            +
                        dataset = load_dataset(dataset_name, trust_remote_code=True)
         | 
| 106 | 
            +
                        dataset_info = get_dataset_info(dataset)
         | 
| 107 | 
            +
                    except ValueError:
         | 
| 108 | 
            +
                        gr.Warning("Dataset collections are not supported. Please use a single dataset.")
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    return (
         | 
| 111 | 
            +
                        gr.update(value="Loaded", interactive=False, variant=DISABLED_BUTTON_VARIANT),
         | 
| 112 | 
            +
                        gr.Accordion(open=True),
         | 
| 113 | 
            +
                        dataset_name,
         | 
| 114 | 
            +
                        dataset,
         | 
| 115 | 
            +
                        *dataset_info
         | 
| 116 | 
            +
                    )
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                select_dataset_button.click(
         | 
| 119 | 
            +
                    select_dataset,
         | 
| 120 | 
            +
                    inputs=[dataset_name],
         | 
| 121 | 
            +
                    outputs=[
         | 
| 122 | 
            +
                        select_dataset_button,
         | 
| 123 | 
            +
                        dataset_config,
         | 
| 124 | 
            +
                        dataset_name_label,
         | 
| 125 | 
            +
                        dataset,
         | 
| 126 | 
            +
                        task_category,
         | 
| 127 | 
            +
                        text_column,
         | 
| 128 | 
            +
                        text_pair_column,
         | 
| 129 | 
            +
                        label_column,
         | 
| 130 | 
            +
                        num_samples,
         | 
| 131 | 
            +
                    ],
         | 
| 132 | 
            +
                    scroll_to_output=True,
         | 
| 133 | 
            +
                )
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                ########## STEP 2 ##########
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                gr.Markdown("## Step 2: Select a List of Language Models")
         | 
| 138 | 
            +
                with gr.Group():
         | 
| 139 | 
            +
                    model_options = [
         | 
| 140 | 
            +
                        (model_handle.split("/")[-1], model_handle)
         | 
| 141 | 
            +
                        for model_handle in LANGUAGE_MODELS
         | 
| 142 | 
            +
                    ]
         | 
| 143 | 
            +
                    models = gr.CheckboxGroup(
         | 
| 144 | 
            +
                        choices=model_options, label="Select Models", value=DEFAULT_MODELS
         | 
| 145 | 
            +
                    )
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                ########## STEP 3: Run Language Model Ranking ##########
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                gr.Markdown("## Step 3: Rank LMs")
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                with gr.Group():
         | 
| 152 | 
            +
                    with gr.Accordion("Advanced settings", open=False):
         | 
| 153 | 
            +
                        with gr.Row():
         | 
| 154 | 
            +
                            estimator = gr.Dropdown(
         | 
| 155 | 
            +
                                choices=["hscore", "logme", "knn"],
         | 
| 156 | 
            +
                                label="Transferability metric",
         | 
| 157 | 
            +
                                value="hscore",
         | 
| 158 | 
            +
                            )
         | 
| 159 | 
            +
                            layer_pooling_options = ["lastlayer", "layermean", "bestlayer"]
         | 
| 160 | 
            +
                            layer_pooling = gr.Dropdown(
         | 
| 161 | 
            +
                                choices=["lastlayer", "layermean", "bestlayer"],
         | 
| 162 | 
            +
                                label="Layer pooling",
         | 
| 163 | 
            +
                                value="layermean",
         | 
| 164 | 
            +
                            )
         | 
| 165 | 
            +
                    submit_button = gr.Button("Run Ranking", interactive=False, variant=DISABLED_BUTTON_VARIANT)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    # Make button active if the dataset is loaded
         | 
| 168 | 
            +
                    dataset.change(
         | 
| 169 | 
            +
                        check_dataset_is_loaded,
         | 
| 170 | 
            +
                        inputs=[dataset, text_column, label_column, task_category],
         | 
| 171 | 
            +
                        outputs=submit_button
         | 
| 172 | 
            +
                    )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    label_column.change(
         | 
| 175 | 
            +
                        check_dataset_is_loaded,
         | 
| 176 | 
            +
                        inputs=[dataset, text_column, label_column, task_category],
         | 
| 177 | 
            +
                        outputs=submit_button
         | 
| 178 | 
            +
                    )
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    text_column.change(
         | 
| 181 | 
            +
                        check_dataset_is_loaded,
         | 
| 182 | 
            +
                        inputs=[dataset, text_column, label_column, task_category],
         | 
| 183 | 
            +
                        outputs=submit_button
         | 
| 184 | 
            +
                    )
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def rank_models(
         | 
| 187 | 
            +
                    dataset,
         | 
| 188 | 
            +
                    downsample_ratio,
         | 
| 189 | 
            +
                    selected_models,
         | 
| 190 | 
            +
                    layer_pooling,
         | 
| 191 | 
            +
                    estimator,
         | 
| 192 | 
            +
                    text_column,
         | 
| 193 | 
            +
                    text_pair_column,
         | 
| 194 | 
            +
                    label_column,
         | 
| 195 | 
            +
                    task_category,
         | 
| 196 | 
            +
                    progress=gr.Progress(),
         | 
| 197 | 
            +
                ):
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    if text_column == "-":
         | 
| 200 | 
            +
                        raise gr.Error("Text column is not set.")
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if label_column == "-":
         | 
| 203 | 
            +
                        raise gr.Error("Label column is not set.")
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    if task_category == "-":
         | 
| 206 | 
            +
                        raise gr.Error(
         | 
| 207 | 
            +
                            "Task category is not set. The dataset must support classification or regression tasks."
         | 
| 208 | 
            +
                        )
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    if text_pair_column == "-":
         | 
| 211 | 
            +
                        text_pair_column = None
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    progress(0.0, "Starting")
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    with EmbeddingProgressTracker(progress=progress, model_names=selected_models) as tracker:
         | 
| 216 | 
            +
                        try:
         | 
| 217 | 
            +
                            ranker = TransformerRanker(
         | 
| 218 | 
            +
                                dataset,
         | 
| 219 | 
            +
                                dataset_downsample=downsample_ratio,
         | 
| 220 | 
            +
                                text_column=text_column,
         | 
| 221 | 
            +
                                text_pair_column=text_pair_column,
         | 
| 222 | 
            +
                                label_column=label_column,
         | 
| 223 | 
            +
                                task_category=task_category,
         | 
| 224 | 
            +
                            )
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                            results = ranker.run(
         | 
| 227 | 
            +
                                models=selected_models,
         | 
| 228 | 
            +
                                layer_aggregator=layer_pooling,
         | 
| 229 | 
            +
                                estimator=estimator,
         | 
| 230 | 
            +
                                batch_size=64,
         | 
| 231 | 
            +
                                tracker=tracker,
         | 
| 232 | 
            +
                            )
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                            sorted_results = sorted(
         | 
| 235 | 
            +
                                results._results.items(), key=lambda item: item[1], reverse=True
         | 
| 236 | 
            +
                            )
         | 
| 237 | 
            +
                            return [
         | 
| 238 | 
            +
                                (i + 1, model, score) for i, (model, score) in enumerate(sorted_results)
         | 
| 239 | 
            +
                            ]
         | 
| 240 | 
            +
                        except Exception as e:
         | 
| 241 | 
            +
                            gr.Error("The dataset is not supported.")
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                gr.Markdown("## Results")
         | 
| 244 | 
            +
                ranking_results = gr.Dataframe(
         | 
| 245 | 
            +
                    headers=["Rank", "Model", "Score"], datatype=["number", "str", "number"]
         | 
| 246 | 
            +
                )
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                submit_button.click(
         | 
| 249 | 
            +
                    rank_models,
         | 
| 250 | 
            +
                    inputs=[
         | 
| 251 | 
            +
                        dataset,
         | 
| 252 | 
            +
                        downsample_ratio,
         | 
| 253 | 
            +
                        models,
         | 
| 254 | 
            +
                        layer_pooling,
         | 
| 255 | 
            +
                        estimator,
         | 
| 256 | 
            +
                        text_column,
         | 
| 257 | 
            +
                        text_pair_column,
         | 
| 258 | 
            +
                        label_column,
         | 
| 259 | 
            +
                        task_category,
         | 
| 260 | 
            +
                    ],
         | 
| 261 | 
            +
                    outputs=ranking_results,
         | 
| 262 | 
            +
                    scroll_to_output=True,
         | 
| 263 | 
            +
                )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                gr.Markdown(
         | 
| 266 | 
            +
                    "*The results are ranked by their transferability score, with the most suitable model listed first. "
         | 
| 267 | 
            +
                    "This ranking allows focusing on the higher-ranked models for further exploration and fine-tuning.*"
         | 
| 268 | 
            +
                )
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                gr.Markdown(FOOTER)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
            if __name__ == "__main__":
         | 
| 273 | 
            +
                demo.queue(default_concurrency_limit=3)
         | 
| 274 | 
            +
                demo.launch(max_threads=6)
         | 
    	
        utils.py
    ADDED
    
    | @@ -0,0 +1,205 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from datasets import concatenate_datasets
         | 
| 3 | 
            +
            from huggingface_hub import HfApi
         | 
| 4 | 
            +
            from huggingface_hub.errors import HFValidationError
         | 
| 5 | 
            +
            from requests.exceptions import HTTPError
         | 
| 6 | 
            +
            from transformer_ranker import Result
         | 
| 7 | 
            +
            from transformer_ranker.datacleaner import DatasetCleaner, TaskCategory
         | 
| 8 | 
            +
            from transformer_ranker.embedder import Embedder
         | 
| 9 | 
            +
            import math
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            DISABLED_BUTTON_VARIANT = "huggingface"
         | 
| 12 | 
            +
            ENABLED_BUTTON_VARIANT = "primary"
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            HEADLINE = """
         | 
| 15 | 
            +
            <h1 align="center">TransformerRanker</h1>
         | 
| 16 | 
            +
            <p align="center" style="max-width: 560px; margin: auto;">
         | 
| 17 | 
            +
                A very simple library that helps you find the best-suited language model for your NLP task.
         | 
| 18 | 
            +
                All you need to do is to select a dataset and a list of pre-trained language models (LMs) from the 🤗 HuggingFace Hub.
         | 
| 19 | 
            +
                TransformerRanker will quickly estimate which of these LMs will perform best on the given dataset!
         | 
| 20 | 
            +
            </p>
         | 
| 21 | 
            +
            <p align="center" style="font-weight: bold; margin-top: 20px; display: flex; justify-content: center; gap: 10px;">
         | 
| 22 | 
            +
                <a href="https://github.com/flairNLP/transformer-ranker">
         | 
| 23 | 
            +
                    <img src="https://img.shields.io/github/stars/flairNLP/transformer-ranker?style=social&label=Repository" alt="GitHub Badge">
         | 
| 24 | 
            +
                </a>
         | 
| 25 | 
            +
                <a href="https://pypi.org/project/transformer-ranker/">
         | 
| 26 | 
            +
                    <img src="https://img.shields.io/badge/Package-orange?style=flat&logo=python" alt="Package Badge">
         | 
| 27 | 
            +
                </a>
         | 
| 28 | 
            +
                <a href="https://github.com/flairNLP/transformer-ranker/blob/main/examples/01-walkthrough.md">
         | 
| 29 | 
            +
                    <img src="https://img.shields.io/badge/Tutorials-blue?style=flat&logo=readthedocs&logoColor=white" alt="Tutorials Badge">
         | 
| 30 | 
            +
                </a>
         | 
| 31 | 
            +
                <img src="https://img.shields.io/badge/license-MIT-green?style=flat" alt="License: MIT">
         | 
| 32 | 
            +
            </p>
         | 
| 33 | 
            +
            <p align="center">Developed at <a href="https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/">Humboldt University of Berlin</a>.</p>
         | 
| 34 | 
            +
            """
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            FOOTER = """
         | 
| 37 | 
            +
            **Note:** This demonstration currently runs on a CPU and is suited for smaller models only.  
         | 
| 38 | 
            +
            **Developers:** [@plonerma](https://huggingface.co/plonerma) and [@lukasgarbas](https://huggingface.co/lukasgarbas). 
         | 
| 39 | 
            +
            For feedback, suggestions, or contributions, reach out via GitHub or leave a message in the [discussions](https://huggingface.co/spaces/lukasgarbas/transformer-ranker/discussions).
         | 
| 40 | 
            +
            """
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            CSS = """
         | 
| 43 | 
            +
            .gradio-container{max-width: 800px !important}
         | 
| 44 | 
            +
            a {color: #ff9d00;}
         | 
| 45 | 
            +
            @media (prefers-color-scheme: dark) { a {color: #be185d;} }
         | 
| 46 | 
            +
            """
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            hf_api = HfApi()
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            def check_dataset_exists(dataset_name):
         | 
| 53 | 
            +
                """Update loading button if dataset can be found"""
         | 
| 54 | 
            +
                try:
         | 
| 55 | 
            +
                    hf_api.dataset_info(dataset_name)
         | 
| 56 | 
            +
                    return gr.update(interactive=True, variant=ENABLED_BUTTON_VARIANT)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                except (HTTPError, HFValidationError):
         | 
| 59 | 
            +
                    return gr.update(value="Load dataset", interactive=False, variant=DISABLED_BUTTON_VARIANT)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            def check_dataset_is_loaded(dataset, text_column, label_column, task_category):
         | 
| 62 | 
            +
                if dataset and text_column != "-" and label_column != "-" and task_category != "-":
         | 
| 63 | 
            +
                    return gr.update(interactive=True, variant=ENABLED_BUTTON_VARIANT)
         | 
| 64 | 
            +
                else:
         | 
| 65 | 
            +
                    return gr.update(interactive=False, variant=DISABLED_BUTTON_VARIANT)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def get_dataset_info(dataset):
         | 
| 69 | 
            +
                """Show information for dataset settings"""
         | 
| 70 | 
            +
                joined_dataset = concatenate_datasets(list(dataset.values()))
         | 
| 71 | 
            +
                datacleaner = DatasetCleaner()
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                try:
         | 
| 74 | 
            +
                    text_column = datacleaner._find_column(joined_dataset, "text column")
         | 
| 75 | 
            +
                except ValueError:
         | 
| 76 | 
            +
                    gr.Warning("Text column can not be found. Select it in the dataset settings.")
         | 
| 77 | 
            +
                    text_column = "-"
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                try:
         | 
| 80 | 
            +
                    label_column = datacleaner._find_column(joined_dataset, "label column")
         | 
| 81 | 
            +
                except ValueError:
         | 
| 82 | 
            +
                    gr.Warning("Label column can not be found. Select it in the dataset settings.")
         | 
| 83 | 
            +
                    label_column = "-"
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                task_category = "-"
         | 
| 86 | 
            +
                if label_column != "-":
         | 
| 87 | 
            +
                    try:
         | 
| 88 | 
            +
                        # Find or set the task_category
         | 
| 89 | 
            +
                        task_category = datacleaner._find_task_category(joined_dataset, label_column)
         | 
| 90 | 
            +
                    except ValueError:
         | 
| 91 | 
            +
                        gr.Warning(
         | 
| 92 | 
            +
                            "Task category could not be determined. The dataset must support classification or regression tasks.",
         | 
| 93 | 
            +
                        )
         | 
| 94 | 
            +
                        pass
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                num_samples = len(joined_dataset)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                return (
         | 
| 99 | 
            +
                    gr.update(
         | 
| 100 | 
            +
                        value=task_category,
         | 
| 101 | 
            +
                        choices=[str(t) for t in TaskCategory],
         | 
| 102 | 
            +
                        interactive=True,
         | 
| 103 | 
            +
                    ),
         | 
| 104 | 
            +
                    gr.update(
         | 
| 105 | 
            +
                        value=text_column, choices=joined_dataset.column_names, interactive=True
         | 
| 106 | 
            +
                    ),
         | 
| 107 | 
            +
                    gr.update(
         | 
| 108 | 
            +
                        value="-", choices=["-", *joined_dataset.column_names], interactive=True
         | 
| 109 | 
            +
                    ),
         | 
| 110 | 
            +
                    gr.update(
         | 
| 111 | 
            +
                        value=label_column, choices=joined_dataset.column_names, interactive=True
         | 
| 112 | 
            +
                    ),
         | 
| 113 | 
            +
                    num_samples,
         | 
| 114 | 
            +
                )
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            def compute_ratio(num_samples_to_use, num_samples):
         | 
| 118 | 
            +
                if num_samples > 0:
         | 
| 119 | 
            +
                    return num_samples_to_use / num_samples
         | 
| 120 | 
            +
                else:
         | 
| 121 | 
            +
                    return 0.0
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            def ensure_one_lm_selected(checkbox_values, previous_values):
         | 
| 125 | 
            +
                if not any(checkbox_values):
         | 
| 126 | 
            +
                    return previous_values
         | 
| 127 | 
            +
                return checkbox_values
         | 
| 128 | 
            +
             | 
| 129 | 
            +
             | 
| 130 | 
            +
            # Apply monkey patch to enable callbacks
         | 
| 131 | 
            +
            _old_embed = Embedder.embed
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            def _new_embed(embedder, sentences, batch_size: int = 32, **kw):
         | 
| 134 | 
            +
                if embedder.tracker is not None:
         | 
| 135 | 
            +
                    embedder.tracker.update_num_batches(math.ceil(len(sentences) / batch_size))
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                return _old_embed(embedder, sentences, batch_size=batch_size, **kw)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            Embedder.embed = _new_embed
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            _old_embed_batch = Embedder.embed_batch
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            def _new_embed_batch(embedder, *args, **kw):
         | 
| 144 | 
            +
                r = _old_embed_batch(embedder, *args, **kw)
         | 
| 145 | 
            +
                if embedder.tracker is not None:
         | 
| 146 | 
            +
                    embedder.tracker.update_batch_complete()
         | 
| 147 | 
            +
                return r
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            Embedder.embed_batch = _new_embed_batch
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            _old_init = Embedder.__init__
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            def _new_init(embedder, *args, tracker=None, **kw):
         | 
| 154 | 
            +
                _old_init(embedder, *args, **kw)
         | 
| 155 | 
            +
                embedder.tracker = tracker
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            Embedder.__init__ = _new_init
         | 
| 158 | 
            +
             | 
| 159 | 
            +
             | 
| 160 | 
            +
            class EmbeddingProgressTracker:
         | 
| 161 | 
            +
                def __init__(self, *, progress, model_names):
         | 
| 162 | 
            +
                    self.model_names = model_names
         | 
| 163 | 
            +
                    self.progress_bar = progress
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                @property
         | 
| 166 | 
            +
                def total(self):
         | 
| 167 | 
            +
                    return len(self.model_names)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                def __enter__(self):
         | 
| 170 | 
            +
                    self.progress_bar = gr.Progress(track_tqdm=False)
         | 
| 171 | 
            +
                    self.current_model = -1
         | 
| 172 | 
            +
                    self.batches_complete = 0
         | 
| 173 | 
            +
                    self.batches_total = None
         | 
| 174 | 
            +
                    return self
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def __exit__(self, typ, value, tb):
         | 
| 177 | 
            +
                    if typ is None:
         | 
| 178 | 
            +
                        self.progress_bar(1.0, desc="Done")
         | 
| 179 | 
            +
                    else:
         | 
| 180 | 
            +
                        self.progress_bar(1.0, desc="Error")
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    # Do not suppress any errors
         | 
| 183 | 
            +
                    return False
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                def update_num_batches(self, total):
         | 
| 186 | 
            +
                    self.current_model += 1
         | 
| 187 | 
            +
                    self.batches_complete = 0
         | 
| 188 | 
            +
                    self.batches_total = total
         | 
| 189 | 
            +
                    self.update_bar()
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def update_batch_complete(self):
         | 
| 192 | 
            +
                    self.batches_complete += 1
         | 
| 193 | 
            +
                    self.update_bar()
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                def update_bar(self):
         | 
| 196 | 
            +
                    i = self.current_model
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    description = f"Running {self.model_names[i]} ({i + 1} / {self.total})"
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    progress = i / self.total
         | 
| 201 | 
            +
                    if self.batches_total is not None:
         | 
| 202 | 
            +
                        progress += (self.batches_complete / self.batches_total) / self.total
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    self.progress_bar(progress=progress, desc=description)
         | 
| 205 | 
            +
             | 
