|
import io |
|
import re |
|
|
|
import pandas as pd |
|
import streamlit as st |
|
|
|
|
|
def extract_table_and_format_from_markdown_text(markdown_table: str) -> pd.DataFrame: |
|
"""Extracts a table from a markdown text and formats it as a pandas DataFrame. |
|
|
|
Args: |
|
text (str): Markdown text containing a table. |
|
|
|
Returns: |
|
pd.DataFrame: Table as pandas DataFrame. |
|
""" |
|
df = ( |
|
pd.read_table(io.StringIO(markdown_table), sep="|", header=0, index_col=1) |
|
.dropna(axis=1, how="all") |
|
.iloc[1:] |
|
.sort_index(ascending=True) |
|
.replace(r"^\s*$", float("nan"), regex=True) |
|
.astype(float, errors="ignore") |
|
) |
|
|
|
|
|
df.columns = df.columns.str.strip() |
|
df.index = df.index.str.strip() |
|
|
|
return df |
|
|
|
|
|
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str: |
|
"""Extracts the markdown table from a multiline string. |
|
|
|
Args: |
|
multiline (str): content of README.md file. |
|
table_headline (str): Headline of the table in the README.md file. |
|
next_headline_start (str, optional): Start of the next headline. Defaults to "#". |
|
|
|
Returns: |
|
str: Markdown table. |
|
|
|
Raises: |
|
ValueError: If the table could not be found. |
|
""" |
|
|
|
table = [] |
|
start = False |
|
for line in multiline.split("\n"): |
|
if line.startswith(table_headline): |
|
start = True |
|
elif line.startswith(next_headline_start): |
|
start = False |
|
elif start: |
|
table.append(line + "\n") |
|
|
|
if len(table) == 0: |
|
raise ValueError(f"Could not find table with headline '{table_headline}'") |
|
|
|
return "".join(table) |
|
|
|
|
|
def remove_markdown_links(text: str) -> str: |
|
"""Modifies a markdown text to remove all markdown links. |
|
Example: [DISPLAY](LINK) to DISPLAY |
|
First find all markdown links with regex. |
|
Then replace them with: $1 |
|
Args: |
|
text (str): Markdown text containing markdown links |
|
Returns: |
|
str: Markdown text without markdown links. |
|
""" |
|
|
|
|
|
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text) |
|
|
|
|
|
for display, link in markdown_links: |
|
text = text.replace(f"[{display}]({link})", display) |
|
|
|
return text |
|
|
|
|
|
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: |
|
""" |
|
Adds a UI on top of a dataframe to let viewers filter columns |
|
|
|
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/ |
|
|
|
Args: |
|
df (pd.DataFrame): Original dataframe |
|
|
|
Returns: |
|
pd.DataFrame: Filtered dataframe |
|
""" |
|
modify = st.checkbox("Add filters") |
|
|
|
if not modify: |
|
return df |
|
|
|
df = df.copy() |
|
|
|
modification_container = st.container() |
|
|
|
with modification_container: |
|
to_filter_index = st.multiselect("Filter by model:", df.index) |
|
if to_filter_index: |
|
df = pd.DataFrame(df.loc[to_filter_index]) |
|
|
|
to_filter_columns = st.multiselect("Filter by benchmark:", df.columns) |
|
if to_filter_columns: |
|
df = pd.DataFrame(df[to_filter_columns]) |
|
|
|
return df |
|
|
|
|
|
def setup_basic(): |
|
title = "π LLM-Leaderboard" |
|
|
|
st.set_page_config( |
|
page_title=title, |
|
page_icon="π", |
|
layout="wide", |
|
) |
|
st.title(title) |
|
|
|
st.markdown( |
|
""" |
|
A joint community effort to create one central leaderboard for LLMs. |
|
Visit [llm-leaderboard](https://github.com/LudwigStumpp/llm-leaderboard) to contribute. |
|
""" |
|
) |
|
|
|
|
|
def setup_leaderboard(readme: str): |
|
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard") |
|
leaderboard_table = remove_markdown_links(leaderboard_table) |
|
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table) |
|
|
|
st.markdown("## Leaderboard") |
|
st.dataframe(filter_dataframe(df_leaderboard)) |
|
|
|
|
|
def setup_benchmarks(readme: str): |
|
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks") |
|
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table) |
|
|
|
st.markdown("## Covered Benchmarks") |
|
|
|
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique()) |
|
df_selected = df_benchmarks.loc[selected_benchmark] |
|
text = [ |
|
f"Name: {selected_benchmark} ", |
|
] |
|
for key in df_selected.keys(): |
|
text.append(f"{key}: {df_selected[key]} ") |
|
st.markdown("\n".join(text)) |
|
|
|
|
|
def setup_sources(readme: str): |
|
sources_table = extract_markdown_table_from_multiline(readme, table_headline="## Sources") |
|
df_sources = extract_table_and_format_from_markdown_text(sources_table) |
|
|
|
st.markdown("## Sources of Above Figures") |
|
|
|
selected_source = st.selectbox("Select a source to learn more:", df_sources.index.unique()) |
|
df_selected = df_sources.loc[selected_source] |
|
text = [ |
|
f"Author: {selected_source} ", |
|
] |
|
for key in df_selected.keys(): |
|
text.append(f"{key}: {df_selected[key]} ") |
|
st.markdown("\n".join(text)) |
|
|
|
|
|
def setup_footer(): |
|
st.markdown( |
|
""" |
|
--- |
|
Made with β€οΈ by the awesome open-source community from all over π. |
|
""" |
|
) |
|
|
|
|
|
def main(): |
|
setup_basic() |
|
|
|
with open("README.md", "r") as f: |
|
readme = f.read() |
|
|
|
setup_leaderboard(readme) |
|
setup_benchmarks(readme) |
|
setup_sources(readme) |
|
setup_footer() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|