Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -1,382 +1,302 @@ 
     | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 2 | 
         
            -
            import spaces
         
     | 
| 3 | 
         
             
            import torch
         
     | 
| 4 | 
         
             
            import numpy as np
         
     | 
| 
         | 
|
| 5 | 
         
             
            import os
         
     | 
| 6 | 
         
             
            import yaml
         
     | 
| 7 | 
         
            -
            import random
         
     | 
| 8 | 
         
            -
            from PIL import Image
         
     | 
| 9 | 
         
            -
            import imageio # For export_to_video and reading video frames
         
     | 
| 10 | 
         
             
            from pathlib import Path
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 11 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 
         | 
|
| 12 | 
         | 
| 13 | 
         
            -
            # ---  
     | 
| 14 | 
         
            -
            from ltx_video.pipelines.pipeline_ltx_video import (
         
     | 
| 15 | 
         
            -
                ConditioningItem,
         
     | 
| 16 | 
         
            -
                LTXVideoPipeline,
         
     | 
| 17 | 
         
            -
                LTXMultiScalePipeline,
         
     | 
| 18 | 
         
            -
            )
         
     | 
| 19 | 
         
            -
            from ltx_video.models.autoencoders.vae_encode import vae_decode, vae_encode, un_normalize_latents, normalize_latents
         
     | 
| 20 | 
         
             
            from inference import (
         
     | 
| 21 | 
         
             
                create_ltx_video_pipeline,
         
     | 
| 22 | 
         
             
                create_latent_upsampler,
         
     | 
| 23 | 
         
            -
                load_image_to_tensor_with_resize_and_crop, 
     | 
| 24 | 
         
            -
                load_media_file, # Re-using for video conditioning
         
     | 
| 25 | 
         
            -
                get_device,
         
     | 
| 26 | 
         
             
                seed_everething,
         
     | 
| 
         | 
|
| 27 | 
         
             
                calculate_padding,
         
     | 
| 
         | 
|
| 28 | 
         
             
            )
         
     | 
| 
         | 
|
| 29 | 
         
             
            from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
         
     | 
| 30 | 
         
            -
            from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
         
     | 
| 31 | 
         
            -
            # --- End LTX-Video Imports ---
         
     | 
| 32 | 
         
            -
             
     | 
| 33 | 
         
            -
            # --- Diffusers/Original utils (keeping export_to_video for convenience if it works) ---
         
     | 
| 34 | 
         
            -
            from diffusers.utils import export_to_video # Keep if it works with PIL list
         
     | 
| 35 | 
         
            -
            # ---
         
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
            -
            # --- Global Configuration & Model Loading ---
         
     | 
| 38 | 
         
            -
            DEVICE = get_device()
         
     | 
| 39 | 
         
            -
            MODEL_DIR = "downloaded_models" # Directory to store downloaded models
         
     | 
| 40 | 
         
            -
            Path(MODEL_DIR).mkdir(parents=True, exist_ok=True)
         
     | 
| 41 | 
         | 
| 42 | 
         
            -
            #  
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 46 | 
         | 
| 47 | 
         
            -
            # Download and prepare model paths from YAML
         
     | 
| 48 | 
         
            -
            LTXV_MODEL_FILENAME = PIPELINE_CONFIG_YAML["checkpoint_path"]
         
     | 
| 49 | 
         
             
            SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
                 
     | 
| 54 | 
         
            -
                 
     | 
| 55 | 
         
            -
                    print(f"Downloading {LTXV_MODEL_FILENAME}...")
         
     | 
| 56 | 
         
            -
                    ltxv_checkpoint_path = hf_hub_download(
         
     | 
| 57 | 
         
            -
                        repo_id="LTX-Colab/LTX-Video-Preview", # Assuming the distilled model is also here or adjust repo_id
         
     | 
| 58 | 
         
            -
                        filename=LTXV_MODEL_FILENAME,
         
     | 
| 59 | 
         
            -
                        local_dir=MODEL_DIR,
         
     | 
| 60 | 
         
            -
                        repo_type="model",
         
     | 
| 61 | 
         
            -
                    )
         
     | 
| 62 | 
         
            -
                else:
         
     | 
| 63 | 
         
            -
                    ltxv_checkpoint_path = os.path.join(MODEL_DIR, LTXV_MODEL_FILENAME)
         
     | 
| 64 | 
         
            -
             
     | 
| 65 | 
         
            -
                # Spatial Upsampler model
         
     | 
| 66 | 
         
            -
                if not os.path.isfile(os.path.join(MODEL_DIR, SPATIAL_UPSCALER_FILENAME)):
         
     | 
| 67 | 
         
            -
                    print(f"Downloading {SPATIAL_UPSCALER_FILENAME}...")
         
     | 
| 68 | 
         
            -
                    spatial_upsampler_path = hf_hub_download(
         
     | 
| 69 | 
         
            -
                        repo_id="Lightricks/LTX-Video",
         
     | 
| 70 | 
         
            -
                        filename=SPATIAL_UPSCALER_FILENAME,
         
     | 
| 71 | 
         
            -
                        local_dir=MODEL_DIR,
         
     | 
| 72 | 
         
            -
                        repo_type="model",
         
     | 
| 73 | 
         
            -
                    )
         
     | 
| 74 | 
         
            -
                else:
         
     | 
| 75 | 
         
            -
                    spatial_upsampler_path = os.path.join(MODEL_DIR, SPATIAL_UPSCALER_FILENAME)
         
     | 
| 76 | 
         
            -
            except Exception as e:
         
     | 
| 77 | 
         
            -
                print(f"Error downloading models: {e}")
         
     | 
| 78 | 
         
            -
                print("Please ensure model files are correctly specified and accessible.")
         
     | 
| 79 | 
         
            -
                # Depending on severity, you might want to exit or disable GPU features
         
     | 
| 80 | 
         
            -
                # For now, we'll let it proceed and potentially fail later if paths are invalid.
         
     | 
| 81 | 
         
            -
                ltxv_checkpoint_path = LTXV_MODEL_FILENAME # Fallback to filename if download fails
         
     | 
| 82 | 
         
            -
                spatial_upsampler_path = SPATIAL_UPSCALER_FILENAME
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
             
     | 
| 85 | 
         
            -
            print(f"Using LTX-Video checkpoint: {ltxv_checkpoint_path}")
         
     | 
| 86 | 
         
            -
            print(f"Using Spatial Upsampler: {spatial_upsampler_path}")
         
     | 
| 87 | 
         
            -
            print(f"Using Text Encoder: {TEXT_ENCODER_PATH}")
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
            -
            # Create LTX-Video pipeline
         
     | 
| 90 | 
         
            -
            pipe = create_ltx_video_pipeline(
         
     | 
| 91 | 
         
            -
                ckpt_path=ltxv_checkpoint_path,
         
     | 
| 92 | 
         
            -
                precision=PIPELINE_CONFIG_YAML["precision"],
         
     | 
| 93 | 
         
            -
                text_encoder_model_name_or_path=TEXT_ENCODER_PATH,
         
     | 
| 94 | 
         
            -
                sampler=PIPELINE_CONFIG_YAML["sampler"], # "from_checkpoint" or specific sampler
         
     | 
| 95 | 
         
            -
                device=DEVICE,
         
     | 
| 96 | 
         
            -
                enhance_prompt=False, # Assuming Gradio controls this, or set based on YAML later
         
     | 
| 97 | 
         
            -
            )#.to(torch.bfloat16)
         
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
            # Create Latent Upsampler
         
     | 
| 100 | 
         
            -
            latent_upsampler = create_latent_upsampler(
         
     | 
| 101 | 
         
            -
                latent_upsampler_model_path=spatial_upsampler_path,
         
     | 
| 102 | 
         
            -
                device=DEVICE
         
     | 
| 103 | 
         
             
            )
         
     | 
| 104 | 
         
            -
             
     | 
| 
         | 
|
| 105 | 
         | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
             
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                 
     | 
| 110 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 111 | 
         
             
            )
         
     | 
| 112 | 
         
            -
             
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
            MAX_SEED = np.iinfo(np.int32).max
         
     | 
| 116 | 
         
            -
            MAX_IMAGE_SIZE = 2048 # Not strictly used here, but good to keep in mind
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
            def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_scale_factor):
         
     | 
| 120 | 
         
            -
                # print("before rounding",height, width)
         
     | 
| 121 | 
         
            -
                height = height - (height % vae_scale_factor)
         
     | 
| 122 | 
         
            -
                width = width - (width % vae_scale_factor)
         
     | 
| 123 | 
         
            -
                # print("after rounding",height, width)
         
     | 
| 124 | 
         
            -
                return height, width
         
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
            @spaces.GPU
         
     | 
| 127 | 
         
            -
            def generate(prompt,
         
     | 
| 128 | 
         
            -
                         negative_prompt,
         
     | 
| 129 | 
         
            -
                         image_path, # Gradio gives filepath for Image component
         
     | 
| 130 | 
         
            -
                         video_path, # Gradio gives filepath for Video component
         
     | 
| 131 | 
         
            -
                         height,
         
     | 
| 132 | 
         
            -
                         width,
         
     | 
| 133 | 
         
            -
                         mode,
         
     | 
| 134 | 
         
            -
                         steps,      # This will map to num_inference_steps for the first pass
         
     | 
| 135 | 
         
            -
                         num_frames,
         
     | 
| 136 | 
         
            -
                         frames_to_use,
         
     | 
| 137 | 
         
            -
                         seed,
         
     | 
| 138 | 
         
            -
                         randomize_seed,
         
     | 
| 139 | 
         
            -
                         guidance_scale,
         
     | 
| 140 | 
         
            -
                         improve_texture=False, progress=gr.Progress(track_tqdm=True)):
         
     | 
| 141 | 
         | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
                 
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 147 | 
         | 
| 148 | 
         
            -
                # --- Prepare conditioning items ---
         
     | 
| 149 | 
         
            -
                conditioning_items_list = []
         
     | 
| 150 | 
         
            -
                input_media_for_vid2vid = None # For the specific vid2vid mode in LTX pipeline
         
     | 
| 151 | 
         | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
             
     | 
| 154 | 
         
            -
             
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
             
     | 
| 
         | 
|
| 157 | 
         | 
| 158 | 
         
            -
                 
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                 
     | 
| 161 | 
         
            -
                
         
     | 
| 162 | 
         
            -
                # Ensure num_frames is multiple of VAE temporal scale factor + 1 (for causal VAE)
         
     | 
| 163 | 
         
            -
                # (num_frames - 1) should be multiple of temporal_scale_factor for non-causal parts
         
     | 
| 164 | 
         
            -
                # For CausalVAE, it's often (N * temporal_factor) + 1 frames.
         
     | 
| 165 | 
         
            -
                # The inference script uses: num_frames_padded = ((num_frames - 2) // 8 + 1) * 8 + 1
         
     | 
| 166 | 
         
            -
                # Assuming 8 is the temporal scale factor here for simplicity, adjust if different
         
     | 
| 167 | 
         
            -
                num_frames_padded_target = ((num_frames - 2) // vae_temporal_scale_factor + 1) * vae_temporal_scale_factor + 1
         
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
                padding_target = calculate_padding(height, width, height_padded_target, width_padded_target)
         
     | 
| 171 | 
         
            -
             
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
                if mode == "video-to-video" and video_path:
         
     | 
| 174 | 
         
            -
                    # LTX pipeline's vid2vid uses `media_items` argument for the full video to transform
         
     | 
| 175 | 
         
            -
                    # and `conditioning_items` for specific keyframes if needed.
         
     | 
| 176 | 
         
            -
                    # Here, the Gradio's "video-to-video" seems to imply transforming the input video.
         
     | 
| 177 | 
         
            -
                    input_media_for_vid2vid = load_media_file(
         
     | 
| 178 | 
         
            -
                        media_path=video_path,
         
     | 
| 179 | 
         
            -
                        height=height, # Original height before padding for loading
         
     | 
| 180 | 
         
            -
                        width=width,   # Original width
         
     | 
| 181 | 
         
            -
                        max_frames=min(num_frames_padded_target, frames_to_use if frames_to_use > 0 else num_frames_padded_target),
         
     | 
| 182 | 
         
            -
                        padding=padding_target, # Padding to make it compatible with VAE of target size
         
     | 
| 183 | 
         
            -
                    )
         
     | 
| 184 | 
         
            -
                    # If we also want to strongly condition on the first frame(s) of this video:
         
     | 
| 185 | 
         
            -
                    conditioning_media = load_media_file(
         
     | 
| 186 | 
         
            -
                        media_path=video_path,
         
     | 
| 187 | 
         
            -
                        height=height, width=width,
         
     | 
| 188 | 
         
            -
                        max_frames=min(frames_to_use if frames_to_use > 0 else 1, num_frames_padded_target), # Use specified frames or just the first
         
     | 
| 189 | 
         
            -
                        padding=padding_target,
         
     | 
| 190 | 
         
            -
                        just_crop=True # Crop to aspect ratio, then resize
         
     | 
| 191 | 
         
            -
                    )
         
     | 
| 192 | 
         
            -
                    conditioning_items_list.append(ConditioningItem(media_item=conditioning_media, media_frame_number=0, conditioning_strength=1.0))
         
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
                elif mode == "image-to-video" and image_path:
         
     | 
| 195 | 
         
            -
                    conditioning_media = load_image_to_tensor_with_resize_and_crop(
         
     | 
| 196 | 
         
            -
                        image_input=image_path,
         
     | 
| 197 | 
         
            -
                        target_height=height, # Original height
         
     | 
| 198 | 
         
            -
                        target_width=width    # Original width
         
     | 
| 199 | 
         
            -
                    )
         
     | 
| 200 | 
         
            -
                    # Apply padding to the loaded tensor
         
     | 
| 201 | 
         
            -
                    conditioning_media = torch.nn.functional.pad(conditioning_media, padding_target)
         
     | 
| 202 | 
         
            -
                    conditioning_items_list.append(ConditioningItem(media_item=conditioning_media, media_frame_number=0, conditioning_strength=1.0))
         
     | 
| 203 | 
         | 
| 204 | 
         
            -
                 
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
                 
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
                 
     | 
| 209 | 
         
            -
                 
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
                 
     | 
| 212 | 
         
            -
                if steps:
         
     | 
| 213 | 
         
            -
                    # The YAML timesteps are specific, so overriding num_inference_steps might not be what we want
         
     | 
| 214 | 
         
            -
                    # If YAML has `timesteps`, `num_inference_steps` is ignored by LTXVideoPipeline.
         
     | 
| 215 | 
         
            -
                    # If YAML does not have `timesteps`, then `num_inference_steps` from Gradio will be used for the first pass.
         
     | 
| 216 | 
         
            -
                    first_pass_config["num_inference_steps"] = steps
         
     | 
| 217 | 
         
            -
                    # For distilled model, the second pass steps are usually very few, defined by its timesteps.
         
     | 
| 218 | 
         
            -
                    # We won't override second_pass_config["num_inference_steps"] from the Gradio `steps`
         
     | 
| 219 | 
         
            -
                    # as it's meant for the primary generation.
         
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
                # Determine initial generation dimensions (downscaled)
         
     | 
| 222 | 
         
            -
                # These are the dimensions for the *first pass* of the multi-scale pipeline
         
     | 
| 223 | 
         
            -
                initial_gen_height = int(height_padded_target * downscale_factor)
         
     | 
| 224 | 
         
            -
                initial_gen_width = int(width_padded_target * downscale_factor)
         
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
                initial_gen_height, initial_gen_width = round_to_nearest_resolution_acceptable_by_vae(
         
     | 
| 227 | 
         
            -
                    initial_gen_height, initial_gen_width, vae_spatial_scale_factor
         
     | 
| 228 | 
         
            -
                )
         
     | 
| 229 | 
         | 
| 230 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 231 | 
         
             
                    "prompt": prompt,
         
     | 
| 232 | 
         
             
                    "negative_prompt": negative_prompt,
         
     | 
| 233 | 
         
            -
                    " 
     | 
| 234 | 
         
            -
                    " 
     | 
| 235 | 
         
            -
                    " 
     | 
| 236 | 
         
            -
                    " 
     | 
| 237 | 
         
            -
                    " 
     | 
| 238 | 
         
            -
                    " 
     | 
| 239 | 
         
            -
                    " 
     | 
| 240 | 
         
            -
                    " 
     | 
| 241 | 
         
            -
                    " 
     | 
| 242 | 
         
            -
                    " 
     | 
| 243 | 
         
            -
                    " 
     | 
| 244 | 
         
            -
                    "image_cond_noise_scale": 0. 
     | 
| 245 | 
         
            -
                    " 
     | 
| 246 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 247 | 
         
             
                }
         
     | 
| 248 | 
         | 
| 249 | 
         
            -
                 
     | 
| 250 | 
         
            -
                if  
     | 
| 251 | 
         
            -
                     
     | 
| 252 | 
         
            -
             
     | 
| 253 | 
         
            -
                     
     | 
| 254 | 
         
            -
             
     | 
| 255 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 256 | 
         | 
| 257 | 
         
            -
                     
     | 
| 258 | 
         
            -
                    first_pass_config.setdefault("decode_noise_scale", PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025))
         
     | 
| 259 | 
         
            -
                    second_pass_config.setdefault("decode_timestep", PIPELINE_CONFIG_YAML.get("decode_timestep", 0.05))
         
     | 
| 260 | 
         
            -
                    second_pass_config.setdefault("decode_noise_scale", PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025))
         
     | 
| 261 | 
         
            -
             
     | 
| 262 | 
         
            -
                    # The multi_scale_pipe's __call__ expects width and height for the *initial* (downscaled) generation
         
     | 
| 263 | 
         
            -
                    result_frames_tensor = multi_scale_pipe(
         
     | 
| 264 | 
         
            -
                        **shared_pipeline_args,
         
     | 
| 265 | 
         
            -
                        width=initial_gen_width,
         
     | 
| 266 | 
         
            -
                        height=initial_gen_height,
         
     | 
| 267 | 
         
            -
                        downscale_factor=downscale_factor, # This might be used internally by multi_scale_pipe
         
     | 
| 268 | 
         
            -
                        first_pass=first_pass_config,
         
     | 
| 269 | 
         
            -
                        second_pass=second_pass_config,
         
     | 
| 270 | 
         
            -
                        output_type="pt" # Get tensor for further processing
         
     | 
| 271 | 
         
            -
                    ).images
         
     | 
| 272 | 
         | 
| 273 | 
         
            -
                    #  
     | 
| 274 | 
         
            -
                     
     | 
| 275 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 276 | 
         
             
                else:
         
     | 
| 277 | 
         
            -
                     
     | 
| 278 | 
         
            -
                     
     | 
| 279 | 
         
            -
                     
     | 
| 280 | 
         
            -
                         first_pass_config["num_inference_steps"] = steps
         
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
                    first_pass_args = {
         
     | 
| 283 | 
         
            -
                        **shared_pipeline_args,
         
     | 
| 284 | 
         
            -
                        **first_pass_config,
         
     | 
| 285 | 
         
            -
                        "width": initial_gen_width,
         
     | 
| 286 | 
         
            -
                        "height": initial_gen_height,
         
     | 
| 287 | 
         
            -
                        "output_type": "latent"
         
     | 
| 288 | 
         
            -
                    }
         
     | 
| 289 | 
         
            -
                    latents = pipe(**first_pass_args).images # .images here is actually latents
         
     | 
| 290 | 
         
            -
                    print("First pass done!")
         
     | 
| 291 | 
         
            -
                    # 2. Upsample latents manually
         
     | 
| 292 | 
         
            -
                    # Need to handle normalization around latent upsampler if it expects unnormalized latents
         
     | 
| 293 | 
         
            -
                    latents_unnorm = un_normalize_latents(latents, pipe.vae, vae_per_channel_normalize=True)
         
     | 
| 294 | 
         
            -
                    upsampled_latents_unnorm = latent_upsampler(latents_unnorm)
         
     | 
| 295 | 
         
            -
                    upsampled_latents = normalize_latents(upsampled_latents_unnorm, pipe.vae, vae_per_channel_normalize=True)
         
     | 
| 296 | 
         | 
| 297 | 
         
            -
                    #  
     | 
| 298 | 
         
            -
                    # The  
     | 
| 299 | 
         
            -
                     
     | 
| 300 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 301 | 
         | 
| 302 | 
         
            -
                     
     | 
| 303 | 
         
            -
                     
     | 
| 304 | 
         
            -
             
     | 
| 305 | 
         
            -
             
     | 
| 306 | 
         
            -
             
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
            -
                    num_video_frames_final = (upsampled_latents.shape[2] -1) * pipe.vae.temporal_downscale_factor + 1
         
     | 
| 309 | 
         
            -
             
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
            -
                    decode_kwargs = {
         
     | 
| 312 | 
         
            -
                        "target_shape": (
         
     | 
| 313 | 
         
            -
                            upsampled_latents.shape[0], # batch
         
     | 
| 314 | 
         
            -
                            3, # out channels
         
     | 
| 315 | 
         
            -
                            num_video_frames_final,
         
     | 
| 316 | 
         
            -
                            upscaled_height_for_decode,
         
     | 
| 317 | 
         
            -
                            upscaled_width_for_decode
         
     | 
| 318 | 
         
            -
                        )
         
     | 
| 319 | 
         
            -
                    }
         
     | 
| 320 | 
         
            -
                    if pipe.vae.decoder.timestep_conditioning:
         
     | 
| 321 | 
         
            -
                        decode_kwargs["timestep"] = torch.tensor([PIPELINE_CONFIG_YAML.get("decode_timestep", 0.05)] * upsampled_latents.shape[0]).to(DEVICE)
         
     | 
| 322 | 
         
            -
                        # Add noise for decode if specified, similar to LTXVideoPipeline's call
         
     | 
| 323 | 
         
            -
                        noise = torch.randn_like(upsampled_latents)
         
     | 
| 324 | 
         
            -
                        decode_noise_val = PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.025)
         
     | 
| 325 | 
         
            -
                        upsampled_latents = upsampled_latents * (1 - decode_noise_val) + noise * decode_noise_val
         
     | 
| 326 | 
         
            -
             
     | 
| 327 | 
         
            -
                    print("before vae decoding")
         
     | 
| 328 | 
         
            -
                    result_frames_tensor = pipe.vae.decode(upsampled_latents, **decode_kwargs).sample
         
     | 
| 329 | 
         
            -
                    print("after vae decoding?")
         
     | 
| 330 | 
         
            -
                    # result_frames_tensor shape: (B, C, F_video, H_video, W_video)
         
     | 
| 331 | 
         
            -
             
     | 
| 332 | 
         
            -
                # --- Post-processing: Cropping and Converting to PIL ---
         
     | 
| 333 | 
         
            -
                # Crop to original num_frames (before padding)
         
     | 
| 334 | 
         
            -
                result_frames_tensor = result_frames_tensor[:, :, :num_frames, :, :]
         
     | 
| 335 | 
         
            -
             
     | 
| 336 | 
         
            -
                # Unpad to target height and width
         
     | 
| 337 | 
         
            -
                _, _, _, current_h, current_w = result_frames_tensor.shape
         
     | 
| 338 | 
         
            -
                
         
     | 
| 339 | 
         
            -
                # Calculate crop needed if current dimensions are larger than padded_target
         
     | 
| 340 | 
         
            -
                # This happens if multi_scale_pipe output is larger than height_padded_target
         
     | 
| 341 | 
         
            -
                crop_y_start = (current_h - height_padded_target) // 2
         
     | 
| 342 | 
         
            -
                crop_x_start = (current_w - width_padded_target) // 2
         
     | 
| 343 | 
         
            -
                
         
     | 
| 344 | 
         
            -
                result_frames_tensor = result_frames_tensor[
         
     | 
| 345 | 
         
            -
                    :, :, :, 
         
     | 
| 346 | 
         
            -
                    crop_y_start : crop_y_start + height_padded_target, 
         
     | 
| 347 | 
         
            -
                    crop_x_start : crop_x_start + width_padded_target
         
     | 
| 348 | 
         
            -
                ]
         
     | 
| 349 | 
         | 
| 350 | 
         
            -
                #  
     | 
| 351 | 
         
            -
                 
     | 
| 352 | 
         
            -
                 
     | 
| 353 | 
         
            -
             
     | 
| 354 | 
         
            -
             
     | 
| 355 | 
         
            -
             
     | 
| 356 | 
         
            -
                    :, :, :,
         
     | 
| 357 | 
         
            -
                    pad_top : unpad_bottom,
         
     | 
| 358 | 
         
            -
                    pad_left : unpad_right
         
     | 
| 359 | 
         
             
                ]
         
     | 
| 360 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 361 | 
         | 
| 362 | 
         
            -
                 
     | 
| 363 | 
         
            -
                 
     | 
| 364 | 
         
            -
                 
     | 
| 365 | 
         
            -
                # We expect B=1 from typical generation
         
     | 
| 366 | 
         
            -
                video_single_batch = result_frames_tensor[0] # Shape: (C, F, H, W)
         
     | 
| 367 | 
         
            -
                video_single_batch = (video_single_batch / 2 + 0.5).clamp(0, 1) # Normalize to [0,1]
         
     | 
| 368 | 
         
            -
                video_single_batch = video_single_batch.permute(1, 2, 3, 0).cpu().float().numpy() # F, H, W, C
         
     | 
| 369 | 
         | 
| 370 | 
         
            -
                 
     | 
| 371 | 
         
            -
                     
     | 
| 372 | 
         
            -
             
     | 
| 373 | 
         
            -
             
     | 
| 374 | 
         
            -
             
     | 
| 375 | 
         
            -
                 
     | 
| 376 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 377 | 
         
             
                return output_video_path
         
     | 
| 378 | 
         | 
| 379 | 
         
            -
             
     | 
| 380 | 
         
             
            css="""
         
     | 
| 381 | 
         
             
            #col-container {
         
     | 
| 382 | 
         
             
                margin: 0 auto;
         
     | 
| 
         @@ -384,89 +304,82 @@ css=""" 
     | 
|
| 384 | 
         
             
            }
         
     | 
| 385 | 
         
             
            """
         
     | 
| 386 | 
         | 
| 387 | 
         
            -
            with gr.Blocks(css=css, theme=gr.themes. 
     | 
| 388 | 
         
             
                gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
         
     | 
| 
         | 
|
| 389 | 
         
             
                with gr.Row():
         
     | 
| 390 | 
         
             
                    with gr.Column():
         
     | 
| 391 | 
         
             
                        with gr.Group():
         
     | 
| 392 | 
         
             
                            with gr.Tab("text-to-video") as text_tab:
         
     | 
| 393 | 
         
            -
                                 
     | 
| 394 | 
         
            -
                                 
     | 
| 395 | 
         
            -
                                 
     | 
| 396 | 
         
            -
                                 
     | 
| 
         | 
|
| 397 | 
         
             
                            with gr.Tab("image-to-video") as image_tab:
         
     | 
| 398 | 
         
            -
                                 
     | 
| 399 | 
         
            -
                                image_i2v = gr.Image(label=" 
     | 
| 400 | 
         
            -
                                i2v_prompt = gr.Textbox(label=" 
     | 
| 401 | 
         
            -
                                i2v_button = gr.Button("Generate Image-to-Video")
         
     | 
| 402 | 
         
             
                            with gr.Tab("video-to-video") as video_tab:
         
     | 
| 403 | 
         
            -
                                 
     | 
| 404 | 
         
            -
                                video_v2v = gr.Video(label=" 
     | 
| 405 | 
         
            -
                                frames_to_use = gr. 
     | 
| 406 | 
         
            -
                                v2v_prompt = gr.Textbox(label=" 
     | 
| 407 | 
         
            -
                                v2v_button = gr.Button("Generate Video-to-Video")
         
     | 
| 408 | 
         | 
| 409 | 
         
            -
             
     | 
| 410 | 
         | 
| 411 | 
         
             
                    with gr.Column():
         
     | 
| 412 | 
         
            -
                         
     | 
| 
         | 
|
| 413 | 
         | 
| 414 | 
         
             
                with gr.Accordion("Advanced settings", open=False):
         
     | 
| 415 | 
         
            -
                    negative_prompt_input = gr.Textbox(label=" 
     | 
| 416 | 
         
             
                    with gr.Row():
         
     | 
| 417 | 
         
            -
                        seed_input = gr.Number(label=" 
     | 
| 418 | 
         
            -
                        randomize_seed_input = gr.Checkbox(label=" 
     | 
| 419 | 
         
             
                    with gr.Row():
         
     | 
| 420 | 
         
            -
                         
     | 
| 421 | 
         
            -
                         
     | 
| 422 | 
         
            -
                         
     | 
| 
         | 
|
| 
         | 
|
| 423 | 
         
             
                    with gr.Row():
         
     | 
| 424 | 
         
            -
                         
     | 
| 425 | 
         
            -
             
     | 
| 426 | 
         
            -
             
     | 
| 427 | 
         
            -
             
     | 
| 428 | 
         
            -
             
     | 
| 429 | 
         
            -
             
     | 
| 430 | 
         
            -
             
     | 
| 431 | 
         
            -
             
     | 
| 432 | 
         
            -
             
     | 
| 433 | 
         
            -
             
     | 
| 434 | 
         
            -
             
     | 
| 435 | 
         
            -
             
     | 
| 436 | 
         
            -
             
     | 
| 437 | 
         
            -
             
     | 
| 438 | 
         
            -
             
     | 
| 439 | 
         
            -
             
     | 
| 440 | 
         
            -
             
     | 
| 441 | 
         
            -
             
     | 
| 442 | 
         
            -
             
     | 
| 443 | 
         
            -
             
     | 
| 444 | 
         
            -
             
     | 
| 445 | 
         
            -
             
     | 
| 446 | 
         
            -
             
     | 
| 447 | 
         
            -
             
     | 
| 448 | 
         
            -
             
     | 
| 449 | 
         
            -
             
     | 
| 450 | 
         
            -
             
     | 
| 451 | 
         
            -
             
     | 
| 452 | 
         
            -
             
     | 
| 453 | 
         
            -
             
     | 
| 454 | 
         
            -
             
     | 
| 455 | 
         
            -
             
     | 
| 456 | 
         
            -
             
     | 
| 457 | 
         
            -
             
     | 
| 458 | 
         
            -
             
     | 
| 459 | 
         
            -
             
     | 
| 460 | 
         
            -
             
     | 
| 461 | 
         
            -
                                          video_v2v,
         
     | 
| 462 | 
         
            -
                                          height_input,
         
     | 
| 463 | 
         
            -
                                          width_input,
         
     | 
| 464 | 
         
            -
                                          gr.State("video-to-video"),
         
     | 
| 465 | 
         
            -
                                          steps_input,
         
     | 
| 466 | 
         
            -
                                          num_frames_input,
         
     | 
| 467 | 
         
            -
                                          frames_to_use,
         
     | 
| 468 | 
         
            -
                                          seed_input,
         
     | 
| 469 | 
         
            -
                                          randomize_seed_input, guidance_scale_input, improve_texture],
         
     | 
| 470 | 
         
            -
                                  outputs=[output])
         
     | 
| 471 | 
         
            -
             
     | 
| 472 | 
         
            -
            demo.launch()
         
     | 
| 
         | 
|
| 1 | 
         
             
            import gradio as gr
         
     | 
| 
         | 
|
| 2 | 
         
             
            import torch
         
     | 
| 3 | 
         
             
            import numpy as np
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
             
            import os
         
     | 
| 6 | 
         
             
            import yaml
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 7 | 
         
             
            from pathlib import Path
         
     | 
| 8 | 
         
            +
            import imageio
         
     | 
| 9 | 
         
            +
            import tempfile
         
     | 
| 10 | 
         
            +
            from PIL import Image
         
     | 
| 11 | 
         
             
            from huggingface_hub import hf_hub_download
         
     | 
| 12 | 
         
            +
            import shutil
         
     | 
| 13 | 
         | 
| 14 | 
         
            +
            # --- Import necessary classes from the provided files ---
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 15 | 
         
             
            from inference import (
         
     | 
| 16 | 
         
             
                create_ltx_video_pipeline,
         
     | 
| 17 | 
         
             
                create_latent_upsampler,
         
     | 
| 18 | 
         
            +
                load_image_to_tensor_with_resize_and_crop,
         
     | 
| 
         | 
|
| 
         | 
|
| 19 | 
         
             
                seed_everething,
         
     | 
| 20 | 
         
            +
                get_device,
         
     | 
| 21 | 
         
             
                calculate_padding,
         
     | 
| 22 | 
         
            +
                load_media_file
         
     | 
| 23 | 
         
             
            )
         
     | 
| 24 | 
         
            +
            from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
         
     | 
| 25 | 
         
             
            from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 26 | 
         | 
| 27 | 
         
            +
            # --- Global constants from user's request and YAML ---
         
     | 
| 28 | 
         
            +
            YAML_CONFIG_STRING = """
         
     | 
| 29 | 
         
            +
            pipeline_type: multi-scale
         
     | 
| 30 | 
         
            +
            checkpoint_path: "ltxv-13b-0.9.7-distilled.safetensors" # This will be replaced by the rc3 version
         
     | 
| 31 | 
         
            +
            downscale_factor: 0.6666666
         
     | 
| 32 | 
         
            +
            spatial_upscaler_model_path: "ltxv-spatial-upscaler-0.9.7.safetensors"
         
     | 
| 33 | 
         
            +
            stg_mode: "attention_values" # options: "attention_values", "attention_skip", "residual", "transformer_block"
         
     | 
| 34 | 
         
            +
            decode_timestep: 0.05
         
     | 
| 35 | 
         
            +
            decode_noise_scale: 0.025
         
     | 
| 36 | 
         
            +
            text_encoder_model_name_or_path: "PixArt-alpha/PixArt-XL-2-1024-MS"
         
     | 
| 37 | 
         
            +
            precision: "bfloat16"
         
     | 
| 38 | 
         
            +
            sampler: "from_checkpoint" # options: "uniform", "linear-quadratic", "from_checkpoint"
         
     | 
| 39 | 
         
            +
            prompt_enhancement_words_threshold: 120
         
     | 
| 40 | 
         
            +
            prompt_enhancer_image_caption_model_name_or_path: "MiaoshouAI/Florence-2-large-PromptGen-v2.0"
         
     | 
| 41 | 
         
            +
            prompt_enhancer_llm_model_name_or_path: "unsloth/Llama-3.2-3B-Instruct"
         
     | 
| 42 | 
         
            +
            stochastic_sampling: false
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            first_pass:
         
     | 
| 45 | 
         
            +
              timesteps: [1.0000, 0.9937, 0.9875, 0.9812, 0.9750, 0.9094, 0.7250]
         
     | 
| 46 | 
         
            +
              guidance_scale: 1
         
     | 
| 47 | 
         
            +
              stg_scale: 0
         
     | 
| 48 | 
         
            +
              rescaling_scale: 1
         
     | 
| 49 | 
         
            +
              skip_block_list: [42]
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            second_pass:
         
     | 
| 52 | 
         
            +
              timesteps: [0.9094, 0.7250, 0.4219]
         
     | 
| 53 | 
         
            +
              guidance_scale: 1
         
     | 
| 54 | 
         
            +
              stg_scale: 0
         
     | 
| 55 | 
         
            +
              rescaling_scale: 1
         
     | 
| 56 | 
         
            +
              skip_block_list: [42]
         
     | 
| 57 | 
         
            +
            """
         
     | 
| 58 | 
         
            +
            PIPELINE_CONFIG_YAML = yaml.safe_load(YAML_CONFIG_STRING)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            # Model specific paths (to be downloaded)
         
     | 
| 61 | 
         
            +
            DISTILLED_MODEL_REPO = "LTX-Colab/LTX-Video-Preview"
         
     | 
| 62 | 
         
            +
            DISTILLED_MODEL_FILENAME = "ltxv-13b-0.9.7-distilled-rc3.safetensors"
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            UPSCALER_REPO = "Lightricks/LTX-Video"
         
     | 
| 65 | 
         
            +
            # SPATIAL_UPSCALER_FILENAME will be taken from PIPELINE_CONFIG_YAML after it's loaded
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) # Max width/height from UI
         
     | 
| 68 | 
         
            +
            MAX_NUM_FRAMES = 257 # From inference.py
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            # --- Global variables for loaded models ---
         
     | 
| 71 | 
         
            +
            pipeline_instance = None
         
     | 
| 72 | 
         
            +
            latent_upsampler_instance = None
         
     | 
| 73 | 
         
            +
            current_device = get_device()
         
     | 
| 74 | 
         
            +
            models_dir = "downloaded_models_gradio" # Use a distinct name
         
     | 
| 75 | 
         
            +
            Path(models_dir).mkdir(parents=True, exist_ok=True)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            # Download models and update config paths
         
     | 
| 78 | 
         
            +
            print(f"Using device: {current_device}")
         
     | 
| 79 | 
         
            +
            print("Downloading models...")
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            distilled_model_actual_path = hf_hub_download(
         
     | 
| 82 | 
         
            +
                repo_id=DISTILLED_MODEL_REPO,
         
     | 
| 83 | 
         
            +
                filename=DISTILLED_MODEL_FILENAME,
         
     | 
| 84 | 
         
            +
                local_dir=models_dir,
         
     | 
| 85 | 
         
            +
                local_dir_use_symlinks=False
         
     | 
| 86 | 
         
            +
            )
         
     | 
| 87 | 
         
            +
            PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
         
     | 
| 88 | 
         
            +
            print(f"Distilled model downloaded to: {distilled_model_actual_path}")
         
     | 
| 89 | 
         | 
| 
         | 
|
| 
         | 
|
| 90 | 
         
             
            SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
         
     | 
| 91 | 
         
            +
            spatial_upscaler_actual_path = hf_hub_download(
         
     | 
| 92 | 
         
            +
                repo_id=UPSCALER_REPO,
         
     | 
| 93 | 
         
            +
                filename=SPATIAL_UPSCALER_FILENAME,
         
     | 
| 94 | 
         
            +
                local_dir=models_dir,
         
     | 
| 95 | 
         
            +
                local_dir_use_symlinks=False
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 96 | 
         
             
            )
         
     | 
| 97 | 
         
            +
            PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
         
     | 
| 98 | 
         
            +
            print(f"Spatial upscaler model downloaded to: {spatial_upscaler_actual_path}")
         
     | 
| 99 | 
         | 
| 100 | 
         
            +
            # Load pipelines
         
     | 
| 101 | 
         
            +
            print("Creating LTX Video pipeline...")
         
     | 
| 102 | 
         
            +
            pipeline_instance = create_ltx_video_pipeline(
         
     | 
| 103 | 
         
            +
                ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
         
     | 
| 104 | 
         
            +
                precision=PIPELINE_CONFIG_YAML["precision"],
         
     | 
| 105 | 
         
            +
                text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
         
     | 
| 106 | 
         
            +
                sampler=PIPELINE_CONFIG_YAML["sampler"],
         
     | 
| 107 | 
         
            +
                device=current_device,
         
     | 
| 108 | 
         
            +
                enhance_prompt=False, # Prompt enhancement handled by UI choice / Gradio logic if desired
         
     | 
| 109 | 
         
            +
                prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
         
     | 
| 110 | 
         
            +
                prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
         
     | 
| 111 | 
         
             
            )
         
     | 
| 112 | 
         
            +
            print("LTX Video pipeline created.")
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 113 | 
         | 
| 114 | 
         
            +
            if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
         
     | 
| 115 | 
         
            +
                print("Creating latent upsampler...")
         
     | 
| 116 | 
         
            +
                latent_upsampler_instance = create_latent_upsampler(
         
     | 
| 117 | 
         
            +
                    PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
         
     | 
| 118 | 
         
            +
                    device=current_device
         
     | 
| 119 | 
         
            +
                )
         
     | 
| 120 | 
         
            +
                print("Latent upsampler created.")
         
     | 
| 121 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 122 | 
         | 
| 123 | 
         
            +
            def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
         
     | 
| 124 | 
         
            +
                         height_ui, width_ui, mode,
         
     | 
| 125 | 
         
            +
                         ui_steps, num_frames_ui,
         
     | 
| 126 | 
         
            +
                         ui_frames_to_use,
         
     | 
| 127 | 
         
            +
                         seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
         
     | 
| 128 | 
         
            +
                         progress=gr.Progress(track_ ΟΟΟΞ΅=True)):
         
     | 
| 129 | 
         | 
| 130 | 
         
            +
                if randomize_seed:
         
     | 
| 131 | 
         
            +
                    seed_ui = random.randint(0, 2**32 - 1)
         
     | 
| 132 | 
         
            +
                seed_everething(int(seed_ui))
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 133 | 
         | 
| 134 | 
         
            +
                actual_height = int(height_ui)
         
     | 
| 135 | 
         
            +
                actual_width = int(width_ui)
         
     | 
| 136 | 
         
            +
                actual_num_frames = int(num_frames_ui)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                # Padded dimensions for pipeline
         
     | 
| 139 | 
         
            +
                height_padded = ((actual_height - 1) // 32 + 1) * 32
         
     | 
| 140 | 
         
            +
                width_padded = ((actual_width - 1) // 32 + 1) * 32
         
     | 
| 141 | 
         
            +
                num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 142 | 
         | 
| 143 | 
         
            +
                padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                call_kwargs = {
         
     | 
| 146 | 
         
             
                    "prompt": prompt,
         
     | 
| 147 | 
         
             
                    "negative_prompt": negative_prompt,
         
     | 
| 148 | 
         
            +
                    "height": height_padded, # Use padded for pipeline
         
     | 
| 149 | 
         
            +
                    "width": width_padded,   # Use padded for pipeline
         
     | 
| 150 | 
         
            +
                    "num_frames": num_frames_padded, # Use padded for pipeline
         
     | 
| 151 | 
         
            +
                    "frame_rate": 30, 
         
     | 
| 152 | 
         
            +
                    "generator": torch.Generator(device=current_device).manual_seed(int(seed_ui)),
         
     | 
| 153 | 
         
            +
                    "output_type": "pt",
         
     | 
| 154 | 
         
            +
                    "conditioning_items": None,
         
     | 
| 155 | 
         
            +
                    "media_items": None,
         
     | 
| 156 | 
         
            +
                    "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
         
     | 
| 157 | 
         
            +
                    "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
         
     | 
| 158 | 
         
            +
                    "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
         
     | 
| 159 | 
         
            +
                    "image_cond_noise_scale": 0.15, # from inference.py defaults
         
     | 
| 160 | 
         
            +
                    "is_video": True, # Assume video output
         
     | 
| 161 | 
         
            +
                    "vae_per_channel_normalize": True, # from inference.py defaults
         
     | 
| 162 | 
         
            +
                    "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
         
     | 
| 163 | 
         
            +
                    "offload_to_cpu": False, # For Gradio, keep on device
         
     | 
| 164 | 
         
            +
                    "enhance_prompt": False, # Assuming no UI for this yet, stick to YAML or handle separately
         
     | 
| 165 | 
         
             
                }
         
     | 
| 166 | 
         | 
| 167 | 
         
            +
                stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
         
     | 
| 168 | 
         
            +
                if stg_mode_str.lower() in ["stg_av", "attention_values"]:
         
     | 
| 169 | 
         
            +
                    call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
         
     | 
| 170 | 
         
            +
                elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
         
     | 
| 171 | 
         
            +
                    call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
         
     | 
| 172 | 
         
            +
                elif stg_mode_str.lower() in ["stg_r", "residual"]:
         
     | 
| 173 | 
         
            +
                    call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
         
     | 
| 174 | 
         
            +
                elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
         
     | 
| 175 | 
         
            +
                    call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
         
     | 
| 176 | 
         
            +
                else:
         
     | 
| 177 | 
         
            +
                    raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                if mode == "image-to-video" and input_image_filepath:
         
     | 
| 180 | 
         
            +
                    try:
         
     | 
| 181 | 
         
            +
                        # Ensure the input image is loaded with original H/W for correct aspect ratio handling by the function
         
     | 
| 182 | 
         
            +
                        media_tensor = load_image_to_tensor_with_resize_and_crop(
         
     | 
| 183 | 
         
            +
                            input_image_filepath, actual_height, actual_width
         
     | 
| 184 | 
         
            +
                        )
         
     | 
| 185 | 
         
            +
                        media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
         
     | 
| 186 | 
         
            +
                        call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(current_device), 0, 1.0)]
         
     | 
| 187 | 
         
            +
                    except Exception as e:
         
     | 
| 188 | 
         
            +
                        print(f"Error loading image {input_image_filepath}: {e}")
         
     | 
| 189 | 
         
            +
                        raise gr.Error(f"Could not load image: {e}")
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                elif mode == "video-to-video" and input_video_filepath:
         
     | 
| 193 | 
         
            +
                    try:
         
     | 
| 194 | 
         
            +
                        call_kwargs["media_items"] = load_media_file(
         
     | 
| 195 | 
         
            +
                            media_path=input_video_filepath,
         
     | 
| 196 | 
         
            +
                            height=actual_height, 
         
     | 
| 197 | 
         
            +
                            width=actual_width,
         
     | 
| 198 | 
         
            +
                            max_frames=int(ui_frames_to_use),
         
     | 
| 199 | 
         
            +
                            padding=padding_values
         
     | 
| 200 | 
         
            +
                        ).to(current_device)
         
     | 
| 201 | 
         
            +
                    except Exception as e:
         
     | 
| 202 | 
         
            +
                        print(f"Error loading video {input_video_filepath}: {e}")
         
     | 
| 203 | 
         
            +
                        raise gr.Error(f"Could not load video: {e}")
         
     | 
| 204 | 
         
            +
                
         
     | 
| 205 | 
         
            +
                # Multi-scale or single-scale pipeline call
         
     | 
| 206 | 
         
            +
                if improve_texture_flag:
         
     | 
| 207 | 
         
            +
                    if not latent_upsampler_instance:
         
     | 
| 208 | 
         
            +
                        raise gr.Error("Spatial upscaler model not loaded, cannot use multi-scale.")
         
     | 
| 209 | 
         | 
| 210 | 
         
            +
                    multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 211 | 
         | 
| 212 | 
         
            +
                    # Prepare pass-specific arguments, overriding with UI inputs where appropriate
         
     | 
| 213 | 
         
            +
                    first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
         
     | 
| 214 | 
         
            +
                    first_pass_args["guidance_scale"] = float(ui_guidance_scale)
         
     | 
| 215 | 
         
            +
                    if "timesteps" not in first_pass_args: # Only if YAML doesn't define timesteps
         
     | 
| 216 | 
         
            +
                        first_pass_args["num_inference_steps"] = int(ui_steps)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
         
     | 
| 219 | 
         
            +
                    second_pass_args["guidance_scale"] = float(ui_guidance_scale)
         
     | 
| 220 | 
         
            +
                    # num_inference_steps for second pass is typically determined by its YAML timesteps
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    multi_scale_call_kwargs = call_kwargs.copy()
         
     | 
| 223 | 
         
            +
                    multi_scale_call_kwargs.update({
         
     | 
| 224 | 
         
            +
                        "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
         
     | 
| 225 | 
         
            +
                        "first_pass": first_pass_args,
         
     | 
| 226 | 
         
            +
                        "second_pass": second_pass_args,
         
     | 
| 227 | 
         
            +
                    })
         
     | 
| 228 | 
         
            +
                    
         
     | 
| 229 | 
         
            +
                    print(f"Calling multi-scale pipeline with effective height={actual_height}, width={actual_width}")
         
     | 
| 230 | 
         
            +
                    result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
         
     | 
| 231 | 
         
             
                else:
         
     | 
| 232 | 
         
            +
                    # Single pass call (using base pipeline)
         
     | 
| 233 | 
         
            +
                    single_pass_call_kwargs = call_kwargs.copy()
         
     | 
| 234 | 
         
            +
                    single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 235 | 
         | 
| 236 | 
         
            +
                    # For single pass, if YAML doesn't have top-level timesteps, use ui_steps
         
     | 
| 237 | 
         
            +
                    # The current YAML is multi-scale focused, so it lacks top-level step control.
         
     | 
| 238 | 
         
            +
                    # We'll assume for a base call, num_inference_steps is directly taken from UI.
         
     | 
| 239 | 
         
            +
                    single_pass_call_kwargs["num_inference_steps"] = int(ui_steps)
         
     | 
| 240 | 
         
            +
                    # Remove pass-specific args if they accidentally slipped in
         
     | 
| 241 | 
         
            +
                    single_pass_call_kwargs.pop("first_pass", None)
         
     | 
| 242 | 
         
            +
                    single_pass_call_kwargs.pop("second_pass", None)
         
     | 
| 243 | 
         
            +
                    single_pass_call_kwargs.pop("downscale_factor", None)
         
     | 
| 244 | 
         | 
| 245 | 
         
            +
                    print(f"Calling base pipeline with height={height_padded}, width={width_padded}")
         
     | 
| 246 | 
         
            +
                    result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                # Crop to original requested dimensions (num_frames, height, width)
         
     | 
| 249 | 
         
            +
                # Padding: (pad_left, pad_right, pad_top, pad_bottom)
         
     | 
| 250 | 
         
            +
                pad_left, pad_right, pad_top, pad_bottom = padding_values
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 251 | 
         | 
| 252 | 
         
            +
                # Calculate slice indices, ensuring they don't go negative if padding was zero
         
     | 
| 253 | 
         
            +
                slice_h_end = -pad_bottom if pad_bottom > 0 else None
         
     | 
| 254 | 
         
            +
                slice_w_end = -pad_right if pad_right > 0 else None
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                result_images_tensor = result_images_tensor[
         
     | 
| 257 | 
         
            +
                    :, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 258 | 
         
             
                ]
         
     | 
| 259 | 
         | 
| 260 | 
         
            +
                # Convert tensor to video file
         
     | 
| 261 | 
         
            +
                video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
         
     | 
| 262 | 
         
            +
                video_np = np.clip(video_np * 0.5 + 0.5, 0, 1) # from [-1,1] to [0,1]
         
     | 
| 263 | 
         
            +
                video_np = (video_np * 255).astype(np.uint8)
         
     | 
| 264 | 
         | 
| 265 | 
         
            +
                temp_dir = tempfile.mkdtemp()
         
     | 
| 266 | 
         
            +
                timestamp = random.randint(10000,99999) # Add timestamp to avoid caching issues
         
     | 
| 267 | 
         
            +
                output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 268 | 
         | 
| 269 | 
         
            +
                try:
         
     | 
| 270 | 
         
            +
                    with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
         
     | 
| 271 | 
         
            +
                        for frame_idx in range(video_np.shape[0]):
         
     | 
| 272 | 
         
            +
                            progress(frame_idx / video_np.shape[0], desc="Saving video")
         
     | 
| 273 | 
         
            +
                            video_writer.append_data(video_np[frame_idx])
         
     | 
| 274 | 
         
            +
                except Exception as e:
         
     | 
| 275 | 
         
            +
                    print(f"Error saving video: {e}")
         
     | 
| 276 | 
         
            +
                    # Fallback to saving frame by frame if container issue
         
     | 
| 277 | 
         
            +
                    try:
         
     | 
| 278 | 
         
            +
                        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8, macro_block_size=None) as video_writer:
         
     | 
| 279 | 
         
            +
                             for frame_idx in range(video_np.shape[0]):
         
     | 
| 280 | 
         
            +
                                progress(frame_idx / video_np.shape[0], desc="Saving video (fallback)")
         
     | 
| 281 | 
         
            +
                                video_writer.append_data(video_np[frame_idx])
         
     | 
| 282 | 
         
            +
                    except Exception as e2:
         
     | 
| 283 | 
         
            +
                        print(f"Fallback video saving error: {e2}")
         
     | 
| 284 | 
         
            +
                        raise gr.Error(f"Failed to save video: {e2}")
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                # Clean up temporary image/video files if they were created by Gradio
         
     | 
| 288 | 
         
            +
                if isinstance(input_image_filepath, tempfile._TemporaryFileWrapper):
         
     | 
| 289 | 
         
            +
                    input_image_filepath.close()
         
     | 
| 290 | 
         
            +
                    if os.path.exists(input_image_filepath.name):
         
     | 
| 291 | 
         
            +
                        os.remove(input_image_filepath.name)
         
     | 
| 292 | 
         
            +
                if isinstance(input_video_filepath, tempfile._TemporaryFileWrapper):
         
     | 
| 293 | 
         
            +
                    input_video_filepath.close()
         
     | 
| 294 | 
         
            +
                    if os.path.exists(input_video_filepath.name):
         
     | 
| 295 | 
         
            +
                        os.remove(input_video_filepath.name)
         
     | 
| 296 | 
         
            +
                        
         
     | 
| 297 | 
         
             
                return output_video_path
         
     | 
| 298 | 
         | 
| 299 | 
         
            +
            # --- Gradio UI Definition (from user) ---
         
     | 
| 300 | 
         
             
            css="""
         
     | 
| 301 | 
         
             
            #col-container {
         
     | 
| 302 | 
         
             
                margin: 0 auto;
         
     | 
| 
         | 
|
| 304 | 
         
             
            }
         
     | 
| 305 | 
         
             
            """
         
     | 
| 306 | 
         | 
| 307 | 
         
            +
            with gr.Blocks(css=css, theme=gr.themes.Glass()) as demo: # Changed theme for variety
         
     | 
| 308 | 
         
             
                gr.Markdown("# LTX Video 0.9.7 Distilled (using LTX-Video lib)")
         
     | 
| 309 | 
         
            +
                gr.Markdown("Generates a short video based on text prompt, image, or existing video.")
         
     | 
| 310 | 
         
             
                with gr.Row():
         
     | 
| 311 | 
         
             
                    with gr.Column():
         
     | 
| 312 | 
         
             
                        with gr.Group():
         
     | 
| 313 | 
         
             
                            with gr.Tab("text-to-video") as text_tab:
         
     | 
| 314 | 
         
            +
                                # Hidden inputs for consistent generate() signature
         
     | 
| 315 | 
         
            +
                                image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
         
     | 
| 316 | 
         
            +
                                video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
         
     | 
| 317 | 
         
            +
                                t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
         
     | 
| 318 | 
         
            +
                                t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
         
     | 
| 319 | 
         
             
                            with gr.Tab("image-to-video") as image_tab:
         
     | 
| 320 | 
         
            +
                                video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
         
     | 
| 321 | 
         
            +
                                image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam"])
         
     | 
| 322 | 
         
            +
                                i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
         
     | 
| 323 | 
         
            +
                                i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
         
     | 
| 324 | 
         
             
                            with gr.Tab("video-to-video") as video_tab:
         
     | 
| 325 | 
         
            +
                                image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
         
     | 
| 326 | 
         
            +
                                video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"])
         
     | 
| 327 | 
         
            +
                                frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
         
     | 
| 328 | 
         
            +
                                v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
         
     | 
| 329 | 
         
            +
                                v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
         
     | 
| 330 | 
         | 
| 331 | 
         
            +
                        improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
         
     | 
| 332 | 
         | 
| 333 | 
         
             
                    with gr.Column():
         
     | 
| 334 | 
         
            +
                        output_video = gr.Video(label="Generated Video", interactive=False)
         
     | 
| 335 | 
         
            +
                        gr.Markdown("Note: Generation can take a few minutes depending on settings and hardware.")
         
     | 
| 336 | 
         | 
| 337 | 
         
             
                with gr.Accordion("Advanced settings", open=False):
         
     | 
| 338 | 
         
            +
                    negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
         
     | 
| 339 | 
         
             
                    with gr.Row():
         
     | 
| 340 | 
         
            +
                        seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
         
     | 
| 341 | 
         
            +
                        randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=False)
         
     | 
| 342 | 
         
             
                    with gr.Row():
         
     | 
| 343 | 
         
            +
                        # For distilled models, CFG is often 1.0 (disabled) or very low.
         
     | 
| 344 | 
         
            +
                        guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
         
     | 
| 345 | 
         
            +
                        # Default to length of first_pass timesteps, if available
         
     | 
| 346 | 
         
            +
                        default_steps = len(PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps", [1]*7)) # Fallback to 7 if not defined
         
     | 
| 347 | 
         
            +
                        steps_input = gr.Slider(label="Inference Steps (for first pass if multi-scale)", minimum=1, maximum=30, value=default_steps, step=1, info="Number of denoising steps. More steps can improve quality but increase time. If YAML defines 'timesteps' for a pass, this UI value is ignored for that pass.")
         
     | 
| 348 | 
         
             
                    with gr.Row():
         
     | 
| 349 | 
         
            +
                        num_frames_input = gr.Slider(label="Number of Frames to Generate", minimum=9, maximum=MAX_NUM_FRAMES, value=25, step=8, info="Total frames in the output video. Should be N*8+1 (e.g., 9, 17, 25...).")
         
     | 
| 350 | 
         
            +
                    with gr.Row():
         
     | 
| 351 | 
         
            +
                        height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
         
     | 
| 352 | 
         
            +
                        width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
         
     | 
| 353 | 
         
            +
                
         
     | 
| 354 | 
         
            +
                # Define click actions
         
     | 
| 355 | 
         
            +
                # Note: gr.State passes the current value of the component without creating a UI element for it.
         
     | 
| 356 | 
         
            +
                # We use hidden Textbox inputs for image_n, video_n etc. and pass their `value` (which is None)
         
     | 
| 357 | 
         
            +
                # to ensure the `generate` function always receives these arguments.
         
     | 
| 358 | 
         
            +
                
         
     | 
| 359 | 
         
            +
                t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
         
     | 
| 360 | 
         
            +
                              height_input, width_input, gr.State("text-to-video"),
         
     | 
| 361 | 
         
            +
                              steps_input, num_frames_input, gr.State(0), # frames_to_use not relevant for t2v
         
     | 
| 362 | 
         
            +
                              seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
         
     | 
| 363 | 
         
            +
                
         
     | 
| 364 | 
         
            +
                i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
         
     | 
| 365 | 
         
            +
                              height_input, width_input, gr.State("image-to-video"),
         
     | 
| 366 | 
         
            +
                              steps_input, num_frames_input, gr.State(0), # frames_to_use not relevant for i2v initial frame
         
     | 
| 367 | 
         
            +
                              seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
         
     | 
| 370 | 
         
            +
                              height_input, width_input, gr.State("video-to-video"),
         
     | 
| 371 | 
         
            +
                              steps_input, num_frames_input, frames_to_use,
         
     | 
| 372 | 
         
            +
                              seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video])
         
     | 
| 375 | 
         
            +
                i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video])
         
     | 
| 376 | 
         
            +
                v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video])
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 379 | 
         
            +
                # Clean up old model directory if it exists from previous runs
         
     | 
| 380 | 
         
            +
                if os.path.exists(models_dir) and os.path.isdir(models_dir):
         
     | 
| 381 | 
         
            +
                    print(f"Cleaning up old model directory: {models_dir}")
         
     | 
| 382 | 
         
            +
                    # shutil.rmtree(models_dir) # Optional: uncomment to force re-download on every run
         
     | 
| 383 | 
         
            +
                Path(models_dir).mkdir(parents=True, exist_ok=True)
         
     | 
| 384 | 
         
            +
                
         
     | 
| 385 | 
         
            +
                demo.queue().launch(debug=True, share=False)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |