Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import yfinance as yf
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
+
import warnings
|
| 7 |
+
import logging
|
| 8 |
+
from typing import List, Dict, Tuple
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
# Hugging Face and LangChain imports
|
| 13 |
+
from langchain.docstore.document import Document
|
| 14 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
| 15 |
+
from langchain.vectorstores import Chroma
|
| 16 |
+
from langchain.chains import RetrievalQA
|
| 17 |
+
from langchain.prompts import PromptTemplate
|
| 18 |
+
import transformers
|
| 19 |
+
from transformers import AutoTokenizer
|
| 20 |
+
|
| 21 |
+
warnings.filterwarnings('ignore')
|
| 22 |
+
|
| 23 |
+
# Configure logging
|
| 24 |
+
logging.basicConfig(level=logging.INFO)
|
| 25 |
+
logger = logging.getLogger(__name__)
|
| 26 |
+
|
| 27 |
+
class MutualFundRAG:
|
| 28 |
+
"""RAG system for mutual fund portfolio optimization with LLM"""
|
| 29 |
+
|
| 30 |
+
def __init__(self):
|
| 31 |
+
# Popular mutual fund tickers
|
| 32 |
+
self.fund_tickers = [
|
| 33 |
+
'VTIAX', # Vanguard Total International Stock Index
|
| 34 |
+
'VTSAX', # Vanguard Total Stock Market Index
|
| 35 |
+
'VBTLX', # Vanguard Total Bond Market Index
|
| 36 |
+
'VTBLX', # Vanguard Total International Bond Index
|
| 37 |
+
'VGIAX', # Vanguard Growth Index
|
| 38 |
+
'VIMAX', # Vanguard Mid-Cap Index
|
| 39 |
+
'VSMAX', # Vanguard Small-Cap Index
|
| 40 |
+
'VGSLX', # Vanguard Real Estate Index
|
| 41 |
+
'VHDYX', # Vanguard High Dividend Yield Index
|
| 42 |
+
'VTAPX' # Vanguard Target Retirement 2065
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# Additional popular funds
|
| 46 |
+
self.extended_tickers = [
|
| 47 |
+
'FXNAX', # Fidelity US Bond Index
|
| 48 |
+
'FSKAX', # Fidelity Total Market Index
|
| 49 |
+
'FTIHX', # Fidelity Total International Index
|
| 50 |
+
'SPY', # SPDR S&P 500 ETF
|
| 51 |
+
'QQQ', # Invesco QQQ Trust
|
| 52 |
+
'VTI', # Vanguard Total Stock Market ETF
|
| 53 |
+
'BND', # Vanguard Total Bond Market ETF
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
self.fund_data = None
|
| 57 |
+
self.embeddings = None
|
| 58 |
+
self.vectorstore = None
|
| 59 |
+
self.qa_chain = None
|
| 60 |
+
self.llm = None
|
| 61 |
+
|
| 62 |
+
# Market indicators
|
| 63 |
+
self.market_indicators = {}
|
| 64 |
+
|
| 65 |
+
# User profile
|
| 66 |
+
self.user_profile = {
|
| 67 |
+
'risk_tolerance': 'moderate',
|
| 68 |
+
'investment_amount': 50000,
|
| 69 |
+
'investment_horizon': 5,
|
| 70 |
+
'preferred_sectors': []
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
def initialize_llm(self, model_name="Qwen/Qwen3-0.6B-Base"):
|
| 74 |
+
"""Initialize the LLM for RAG system"""
|
| 75 |
+
try:
|
| 76 |
+
logger.info(f"Initializing LLM: {model_name}")
|
| 77 |
+
|
| 78 |
+
# Initialize tokenizer and model
|
| 79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 80 |
+
if tokenizer.pad_token is None:
|
| 81 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 82 |
+
|
| 83 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
| 84 |
+
model_name,
|
| 85 |
+
device_map="auto",
|
| 86 |
+
torch_dtype="auto"
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Create pipeline
|
| 90 |
+
pipeline = transformers.pipeline(
|
| 91 |
+
"text-generation",
|
| 92 |
+
model=model,
|
| 93 |
+
tokenizer=tokenizer,
|
| 94 |
+
max_new_tokens=512,
|
| 95 |
+
temperature=0.7,
|
| 96 |
+
do_sample=True,
|
| 97 |
+
pad_token_id=tokenizer.eos_token_id
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.llm = HuggingFacePipeline(pipeline=pipeline)
|
| 101 |
+
logger.info("LLM initialized successfully")
|
| 102 |
+
return "β
LLM initialized successfully"
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
logger.error(f"Error initializing LLM: {e}")
|
| 106 |
+
return f"β Error initializing LLM: {str(e)}"
|
| 107 |
+
|
| 108 |
+
def fetch_fund_data(self, tickers: List[str] = None, period: str = '1y') -> pd.DataFrame:
|
| 109 |
+
"""Fetch real mutual fund data from Yahoo Finance"""
|
| 110 |
+
if tickers is None:
|
| 111 |
+
tickers = self.fund_tickers
|
| 112 |
+
|
| 113 |
+
fund_data = []
|
| 114 |
+
|
| 115 |
+
logger.info("Fetching mutual fund data from Yahoo Finance...")
|
| 116 |
+
|
| 117 |
+
for ticker in tickers:
|
| 118 |
+
try:
|
| 119 |
+
fund = yf.Ticker(ticker)
|
| 120 |
+
hist = fund.history(period=period)
|
| 121 |
+
info = fund.info
|
| 122 |
+
|
| 123 |
+
if hist.empty:
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
+
# Calculate metrics
|
| 127 |
+
returns = hist['Close'].pct_change().dropna()
|
| 128 |
+
avg_return = returns.mean() * 252 # Annualized
|
| 129 |
+
volatility = returns.std() * np.sqrt(252) # Annualized
|
| 130 |
+
sharpe_ratio = avg_return / volatility if volatility != 0 else 0
|
| 131 |
+
|
| 132 |
+
# Get latest NAV
|
| 133 |
+
latest_nav = hist['Close'].iloc[-1]
|
| 134 |
+
|
| 135 |
+
# Risk categorization
|
| 136 |
+
if volatility < 0.1:
|
| 137 |
+
risk_level = 'Low'
|
| 138 |
+
elif volatility < 0.2:
|
| 139 |
+
risk_level = 'Medium'
|
| 140 |
+
else:
|
| 141 |
+
risk_level = 'High'
|
| 142 |
+
|
| 143 |
+
# Get fund information
|
| 144 |
+
fund_name = info.get('longName', ticker)
|
| 145 |
+
category = info.get('category', 'Unknown')
|
| 146 |
+
expense_ratio = info.get('annualReportExpenseRatio', np.nan)
|
| 147 |
+
|
| 148 |
+
# Estimate sector exposure (simplified)
|
| 149 |
+
sector_exposure = self.estimate_sector_exposure(fund_name, category)
|
| 150 |
+
|
| 151 |
+
fund_data.append({
|
| 152 |
+
'Ticker': ticker,
|
| 153 |
+
'Name': fund_name[:50] + '...' if len(fund_name) > 50 else fund_name,
|
| 154 |
+
'Category': category,
|
| 155 |
+
'NAV': round(latest_nav, 2),
|
| 156 |
+
'Annual_Return_%': round(avg_return * 100, 2),
|
| 157 |
+
'Volatility_%': round(volatility * 100, 2),
|
| 158 |
+
'Sharpe_Ratio': round(sharpe_ratio, 3),
|
| 159 |
+
'Risk_Level': risk_level,
|
| 160 |
+
'Expense_Ratio_%': round(expense_ratio * 100, 2) if not np.isnan(expense_ratio) else 'N/A',
|
| 161 |
+
**sector_exposure
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
logger.info(f"Successfully fetched data for {ticker}")
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Error fetching {ticker}: {e}")
|
| 168 |
+
continue
|
| 169 |
+
|
| 170 |
+
self.fund_data = pd.DataFrame(fund_data)
|
| 171 |
+
return self.fund_data
|
| 172 |
+
|
| 173 |
+
def estimate_sector_exposure(self, fund_name: str, category: str) -> Dict:
|
| 174 |
+
"""Estimate sector exposure based on fund type"""
|
| 175 |
+
sector_exposure = {
|
| 176 |
+
'Technology_%': 0,
|
| 177 |
+
'Healthcare_%': 0,
|
| 178 |
+
'Finance_%': 0,
|
| 179 |
+
'Energy_%': 0,
|
| 180 |
+
'Consumer_%': 0,
|
| 181 |
+
'Real_Estate_%': 0
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
fund_name_lower = fund_name.lower()
|
| 185 |
+
category_lower = category.lower()
|
| 186 |
+
|
| 187 |
+
if 'technology' in fund_name_lower or 'tech' in fund_name_lower:
|
| 188 |
+
sector_exposure['Technology_%'] = np.random.uniform(60, 90)
|
| 189 |
+
elif 'real estate' in fund_name_lower or 'reit' in fund_name_lower:
|
| 190 |
+
sector_exposure['Real_Estate_%'] = np.random.uniform(70, 95)
|
| 191 |
+
elif 'total' in fund_name_lower or 'market' in fund_name_lower:
|
| 192 |
+
# Diversified fund
|
| 193 |
+
total = 100
|
| 194 |
+
for sector in sector_exposure.keys():
|
| 195 |
+
if total > 0:
|
| 196 |
+
allocation = np.random.uniform(10, 25)
|
| 197 |
+
allocation = min(allocation, total)
|
| 198 |
+
sector_exposure[sector] = round(allocation, 1)
|
| 199 |
+
total -= allocation
|
| 200 |
+
else:
|
| 201 |
+
# Random allocation for other funds
|
| 202 |
+
remaining = 100
|
| 203 |
+
sectors = list(sector_exposure.keys())
|
| 204 |
+
for i, sector in enumerate(sectors[:-1]):
|
| 205 |
+
if remaining > 0:
|
| 206 |
+
allocation = np.random.uniform(0, min(30, remaining))
|
| 207 |
+
sector_exposure[sector] = round(allocation, 1)
|
| 208 |
+
remaining -= allocation
|
| 209 |
+
sector_exposure[sectors[-1]] = round(remaining, 1)
|
| 210 |
+
|
| 211 |
+
return sector_exposure
|
| 212 |
+
|
| 213 |
+
def get_market_indicators(self) -> Dict:
|
| 214 |
+
"""Fetch current market indicators"""
|
| 215 |
+
try:
|
| 216 |
+
# Fetch 10-year treasury yield
|
| 217 |
+
treasury = yf.Ticker("^TNX")
|
| 218 |
+
treasury_hist = treasury.history(period="5d")
|
| 219 |
+
interest_rate = treasury_hist['Close'].iloc[-1] if not treasury_hist.empty else 3.5
|
| 220 |
+
|
| 221 |
+
# VIX for market volatility
|
| 222 |
+
vix = yf.Ticker("^VIX")
|
| 223 |
+
vix_hist = vix.history(period="5d")
|
| 224 |
+
market_volatility = vix_hist['Close'].iloc[-1] if not vix_hist.empty else 20
|
| 225 |
+
|
| 226 |
+
self.market_indicators = {
|
| 227 |
+
'Interest_Rate_%': round(interest_rate, 2),
|
| 228 |
+
'Inflation_Rate_%': 3.2, # Static for demo
|
| 229 |
+
'Market_Volatility_VIX': round(market_volatility, 2),
|
| 230 |
+
'Last_Updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
return self.market_indicators
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
logger.error(f"Error fetching market indicators: {e}")
|
| 237 |
+
return {
|
| 238 |
+
'Interest_Rate_%': 3.5,
|
| 239 |
+
'Inflation_Rate_%': 3.2,
|
| 240 |
+
'Market_Volatility_VIX': 20.0,
|
| 241 |
+
'Last_Updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
def prepare_documents(self) -> List[Document]:
|
| 245 |
+
"""Convert fund data to documents for ChromaDB"""
|
| 246 |
+
if self.fund_data is None or self.fund_data.empty:
|
| 247 |
+
return []
|
| 248 |
+
|
| 249 |
+
documents = []
|
| 250 |
+
|
| 251 |
+
for _, row in self.fund_data.iterrows():
|
| 252 |
+
content = f"""
|
| 253 |
+
Fund: {row['Ticker']} - {row['Name']}
|
| 254 |
+
Category: {row['Category']}
|
| 255 |
+
NAV: ${row['NAV']}
|
| 256 |
+
Annual Return: {row['Annual_Return_%']}%
|
| 257 |
+
Volatility: {row['Volatility_%']}%
|
| 258 |
+
Sharpe Ratio: {row['Sharpe_Ratio']}
|
| 259 |
+
Risk Level: {row['Risk_Level']}
|
| 260 |
+
Expense Ratio: {row['Expense_Ratio_%']}%
|
| 261 |
+
Sector Allocation - Technology: {row['Technology_%']}%, Healthcare: {row['Healthcare_%']}%,
|
| 262 |
+
Finance: {row['Finance_%']}%, Energy: {row['Energy_%']}%,
|
| 263 |
+
Consumer: {row['Consumer_%']}%, Real Estate: {row['Real_Estate_%']}%
|
| 264 |
+
Market Context - Interest Rate: {self.market_indicators.get('Interest_Rate_%', 'N/A')}%,
|
| 265 |
+
Inflation: {self.market_indicators.get('Inflation_Rate_%', 'N/A')}%,
|
| 266 |
+
VIX: {self.market_indicators.get('Market_Volatility_VIX', 'N/A')}
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
documents.append(Document(page_content=content.strip()))
|
| 270 |
+
|
| 271 |
+
return documents
|
| 272 |
+
|
| 273 |
+
def setup_rag_system(self):
|
| 274 |
+
"""Setup the complete RAG system"""
|
| 275 |
+
try:
|
| 276 |
+
logger.info("Setting up RAG system...")
|
| 277 |
+
|
| 278 |
+
# Initialize embeddings
|
| 279 |
+
self.embeddings = HuggingFaceEmbeddings(
|
| 280 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2"
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Prepare documents
|
| 284 |
+
documents = self.prepare_documents()
|
| 285 |
+
|
| 286 |
+
if not documents:
|
| 287 |
+
return "β No documents to process. Please fetch fund data first."
|
| 288 |
+
|
| 289 |
+
# Setup ChromaDB
|
| 290 |
+
self.vectorstore = Chroma.from_documents(
|
| 291 |
+
documents=documents,
|
| 292 |
+
collection_name="mutual_fund_optimization",
|
| 293 |
+
embedding=self.embeddings,
|
| 294 |
+
persist_directory="./mutual_fund_db"
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Setup QA chain if LLM is available
|
| 298 |
+
if self.llm is not None:
|
| 299 |
+
template = """
|
| 300 |
+
You are a financial advisor specializing in mutual fund portfolio optimization.
|
| 301 |
+
|
| 302 |
+
Based on the following mutual fund data, provide specific investment recommendations.
|
| 303 |
+
|
| 304 |
+
Context: {context}
|
| 305 |
+
|
| 306 |
+
Question: {question}
|
| 307 |
+
|
| 308 |
+
Please provide:
|
| 309 |
+
1. Recommended portfolio allocation percentages
|
| 310 |
+
2. Risk assessment based on the user's profile
|
| 311 |
+
3. Expected returns analysis
|
| 312 |
+
4. Sector diversification recommendations
|
| 313 |
+
5. Specific fund recommendations with rationale
|
| 314 |
+
|
| 315 |
+
Keep your response concise and actionable.
|
| 316 |
+
|
| 317 |
+
Answer:
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
prompt = PromptTemplate(
|
| 321 |
+
input_variables=["context", "question"],
|
| 322 |
+
template=template
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
self.qa_chain = RetrievalQA.from_chain_type(
|
| 326 |
+
llm=self.llm,
|
| 327 |
+
chain_type="stuff",
|
| 328 |
+
retriever=self.vectorstore.as_retriever(search_kwargs={"k": 5}),
|
| 329 |
+
chain_type_kwargs={"prompt": prompt}
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
logger.info("RAG system setup complete")
|
| 333 |
+
return "β
RAG system initialized successfully"
|
| 334 |
+
|
| 335 |
+
except Exception as e:
|
| 336 |
+
logger.error(f"Error setting up RAG system: {e}")
|
| 337 |
+
return f"β Error setting up RAG system: {str(e)}"
|
| 338 |
+
|
| 339 |
+
def get_ai_recommendations(self, user_query: str) -> str:
|
| 340 |
+
"""Get AI-powered investment recommendations"""
|
| 341 |
+
try:
|
| 342 |
+
if self.qa_chain is None:
|
| 343 |
+
return "β AI system not initialized. Please setup the RAG system first."
|
| 344 |
+
|
| 345 |
+
# Add user profile context to query
|
| 346 |
+
contextual_query = f"""
|
| 347 |
+
User Profile:
|
| 348 |
+
- Risk Tolerance: {self.user_profile['risk_tolerance']}
|
| 349 |
+
- Investment Amount: ${self.user_profile['investment_amount']:,}
|
| 350 |
+
- Investment Horizon: {self.user_profile['investment_horizon']} years
|
| 351 |
+
|
| 352 |
+
Market Context:
|
| 353 |
+
- Interest Rate: {self.market_indicators.get('Interest_Rate_%', 'N/A')}%
|
| 354 |
+
- Market Volatility (VIX): {self.market_indicators.get('Market_Volatility_VIX', 'N/A')}
|
| 355 |
+
|
| 356 |
+
User Question: {user_query}
|
| 357 |
+
"""
|
| 358 |
+
|
| 359 |
+
logger.info("Generating AI recommendations...")
|
| 360 |
+
result = self.qa_chain({"query": contextual_query})
|
| 361 |
+
|
| 362 |
+
return result.get('result', 'No recommendation generated')
|
| 363 |
+
|
| 364 |
+
except Exception as e:
|
| 365 |
+
logger.error(f"Error getting AI recommendations: {e}")
|
| 366 |
+
return f"β Error generating recommendations: {str(e)}"
|
| 367 |
+
|
| 368 |
+
def calculate_portfolio_metrics(self, selected_funds: List[str], weights: List[float]) -> Dict:
|
| 369 |
+
"""Calculate portfolio-level metrics"""
|
| 370 |
+
try:
|
| 371 |
+
# Fetch historical data for selected funds
|
| 372 |
+
tickers_str = ' '.join(selected_funds)
|
| 373 |
+
data = yf.download(tickers_str, period='1y', progress=False)['Close']
|
| 374 |
+
|
| 375 |
+
if data.empty:
|
| 376 |
+
return {"error": "No data available for selected funds"}
|
| 377 |
+
|
| 378 |
+
# Calculate returns
|
| 379 |
+
returns = data.pct_change().dropna()
|
| 380 |
+
|
| 381 |
+
# Portfolio returns
|
| 382 |
+
weights = np.array(weights) / np.sum(weights) # Normalize weights
|
| 383 |
+
portfolio_returns = returns.dot(weights)
|
| 384 |
+
|
| 385 |
+
# Portfolio metrics
|
| 386 |
+
annual_return = portfolio_returns.mean() * 252
|
| 387 |
+
annual_volatility = portfolio_returns.std() * np.sqrt(252)
|
| 388 |
+
sharpe_ratio = annual_return / annual_volatility if annual_volatility != 0 else 0
|
| 389 |
+
|
| 390 |
+
# Risk metrics
|
| 391 |
+
var_95 = np.percentile(portfolio_returns, 5)
|
| 392 |
+
max_drawdown = self.calculate_max_drawdown(portfolio_returns)
|
| 393 |
+
|
| 394 |
+
return {
|
| 395 |
+
'Annual Return (%)': round(annual_return * 100, 2),
|
| 396 |
+
'Annual Volatility (%)': round(annual_volatility * 100, 2),
|
| 397 |
+
'Sharpe Ratio': round(sharpe_ratio, 3),
|
| 398 |
+
'VaR (95%)': round(var_95 * 100, 2),
|
| 399 |
+
'Max Drawdown (%)': round(max_drawdown * 100, 2)
|
| 400 |
+
}
|
| 401 |
+
|
| 402 |
+
except Exception as e:
|
| 403 |
+
return {"error": f"Error calculating portfolio metrics: {str(e)}"}
|
| 404 |
+
|
| 405 |
+
def calculate_max_drawdown(self, returns: pd.Series) -> float:
|
| 406 |
+
"""Calculate maximum drawdown"""
|
| 407 |
+
cumulative = (1 + returns).cumprod()
|
| 408 |
+
rolling_max = cumulative.expanding().max()
|
| 409 |
+
drawdowns = (cumulative - rolling_max) / rolling_max
|
| 410 |
+
return drawdowns.min()
|
| 411 |
+
|
| 412 |
+
# Initialize the RAG system
|
| 413 |
+
rag_system = MutualFundRAG()
|
| 414 |
+
|
| 415 |
+
def initialize_system():
|
| 416 |
+
"""Initialize the complete system"""
|
| 417 |
+
try:
|
| 418 |
+
# Initialize LLM
|
| 419 |
+
llm_status = rag_system.initialize_llm()
|
| 420 |
+
|
| 421 |
+
# Fetch market indicators
|
| 422 |
+
rag_system.get_market_indicators()
|
| 423 |
+
|
| 424 |
+
return llm_status
|
| 425 |
+
except Exception as e:
|
| 426 |
+
return f"β Error initializing system: {str(e)}"
|
| 427 |
+
|
| 428 |
+
def fetch_data_interface(include_extended: bool = False):
|
| 429 |
+
"""Interface function to fetch fund data"""
|
| 430 |
+
try:
|
| 431 |
+
tickers = rag_system.fund_tickers + (rag_system.extended_tickers if include_extended else [])
|
| 432 |
+
df = rag_system.fetch_fund_data(tickers)
|
| 433 |
+
|
| 434 |
+
if df.empty:
|
| 435 |
+
return "β No data fetched. Please check your internet connection.", None
|
| 436 |
+
|
| 437 |
+
# Setup RAG system after fetching data
|
| 438 |
+
rag_status = rag_system.setup_rag_system()
|
| 439 |
+
|
| 440 |
+
status = f"β
Successfully fetched data for {len(df)} funds\n{rag_status}"
|
| 441 |
+
return status, df
|
| 442 |
+
|
| 443 |
+
except Exception as e:
|
| 444 |
+
return f"β Error fetching data: {str(e)}", None
|
| 445 |
+
|
| 446 |
+
def get_ai_recommendation_interface(user_query: str, risk_tolerance: str, investment_amount: float, horizon: int):
|
| 447 |
+
"""Interface function for AI recommendations"""
|
| 448 |
+
try:
|
| 449 |
+
if not user_query.strip():
|
| 450 |
+
return "β Please enter a question about your investment needs."
|
| 451 |
+
|
| 452 |
+
# Update user profile
|
| 453 |
+
rag_system.user_profile.update({
|
| 454 |
+
'risk_tolerance': risk_tolerance.lower(),
|
| 455 |
+
'investment_amount': investment_amount,
|
| 456 |
+
'investment_horizon': horizon
|
| 457 |
+
})
|
| 458 |
+
|
| 459 |
+
# Get AI recommendations
|
| 460 |
+
recommendation = rag_system.get_ai_recommendations(user_query)
|
| 461 |
+
|
| 462 |
+
return recommendation
|
| 463 |
+
|
| 464 |
+
except Exception as e:
|
| 465 |
+
return f"β Error getting AI recommendations: {str(e)}"
|
| 466 |
+
|
| 467 |
+
def calculate_metrics_interface(selected_funds_text: str, weights_text: str):
|
| 468 |
+
"""Interface function to calculate portfolio metrics"""
|
| 469 |
+
try:
|
| 470 |
+
if not selected_funds_text.strip() or not weights_text.strip():
|
| 471 |
+
return "Please provide both fund tickers and weights"
|
| 472 |
+
|
| 473 |
+
# Parse inputs
|
| 474 |
+
selected_funds = [ticker.strip().upper() for ticker in selected_funds_text.split(',')]
|
| 475 |
+
weights = [float(w.strip()) for w in weights_text.split(',')]
|
| 476 |
+
|
| 477 |
+
if len(selected_funds) != len(weights):
|
| 478 |
+
return "Number of funds and weights must match"
|
| 479 |
+
|
| 480 |
+
metrics = rag_system.calculate_portfolio_metrics(selected_funds, weights)
|
| 481 |
+
|
| 482 |
+
if 'error' in metrics:
|
| 483 |
+
return metrics['error']
|
| 484 |
+
|
| 485 |
+
# Format metrics for display
|
| 486 |
+
formatted_metrics = "\n".join([f"{key}: {value}" for key, value in metrics.items()])
|
| 487 |
+
return f"π Portfolio Metrics:\n\n{formatted_metrics}"
|
| 488 |
+
|
| 489 |
+
except Exception as e:
|
| 490 |
+
return f"β Error calculating metrics: {str(e)}"
|
| 491 |
+
|
| 492 |
+
# Initialize system on startup
|
| 493 |
+
print("π Initializing Mutual Fund RAG System...")
|
| 494 |
+
init_status = initialize_system()
|
| 495 |
+
print(init_status)
|
| 496 |
+
|
| 497 |
+
# Create the Gradio interface
|
| 498 |
+
with gr.Blocks(title="AI-Powered Mutual Fund Optimizer", theme="default") as app:
|
| 499 |
+
|
| 500 |
+
gr.Markdown("""
|
| 501 |
+
# π€ AI-Powered Mutual Fund Portfolio Optimizer
|
| 502 |
+
|
| 503 |
+
Get personalized investment recommendations using real Yahoo Finance data and advanced AI analysis.
|
| 504 |
+
""")
|
| 505 |
+
|
| 506 |
+
with gr.Tabs():
|
| 507 |
+
|
| 508 |
+
# Data Fetching Tab
|
| 509 |
+
with gr.Tab("π Fund Data"):
|
| 510 |
+
gr.Markdown("### Fetch Real-Time Mutual Fund Data")
|
| 511 |
+
|
| 512 |
+
with gr.Row():
|
| 513 |
+
with gr.Column():
|
| 514 |
+
include_extended = gr.Checkbox(
|
| 515 |
+
label="Include Extended Fund List",
|
| 516 |
+
value=False,
|
| 517 |
+
info="Include additional ETFs and funds"
|
| 518 |
+
)
|
| 519 |
+
fetch_btn = gr.Button("π Fetch Fund Data", variant="primary")
|
| 520 |
+
|
| 521 |
+
with gr.Column():
|
| 522 |
+
fetch_status = gr.Textbox(
|
| 523 |
+
label="Status",
|
| 524 |
+
interactive=False,
|
| 525 |
+
placeholder="Click 'Fetch Fund Data' to start",
|
| 526 |
+
lines=3
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
fund_data_display = gr.Dataframe(
|
| 530 |
+
label="π Available Mutual Funds",
|
| 531 |
+
interactive=False,
|
| 532 |
+
wrap=True
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
fetch_btn.click(
|
| 536 |
+
fn=fetch_data_interface,
|
| 537 |
+
inputs=[include_extended],
|
| 538 |
+
outputs=[fetch_status, fund_data_display]
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
# AI Recommendations Tab
|
| 542 |
+
with gr.Tab("π€ AI Investment Advisor"):
|
| 543 |
+
gr.Markdown("### Get Personalized AI Investment Recommendations")
|
| 544 |
+
|
| 545 |
+
with gr.Row():
|
| 546 |
+
with gr.Column():
|
| 547 |
+
user_query = gr.Textbox(
|
| 548 |
+
label="Your Investment Question",
|
| 549 |
+
placeholder="e.g., 'I want to invest $50,000 for retirement in 20 years with moderate risk'",
|
| 550 |
+
lines=3,
|
| 551 |
+
info="Ask about portfolio allocation, fund selection, or investment strategy"
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
with gr.Row():
|
| 555 |
+
risk_tolerance = gr.Radio(
|
| 556 |
+
choices=["Conservative", "Moderate", "Aggressive"],
|
| 557 |
+
label="Risk Tolerance",
|
| 558 |
+
value="Moderate"
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
investment_amount = gr.Number(
|
| 562 |
+
label="Investment Amount ($)",
|
| 563 |
+
value=50000,
|
| 564 |
+
minimum=1000
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
investment_horizon = gr.Slider(
|
| 568 |
+
label="Investment Horizon (Years)",
|
| 569 |
+
minimum=1,
|
| 570 |
+
maximum=30,
|
| 571 |
+
value=5,
|
| 572 |
+
step=1
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
get_recommendation_btn = gr.Button("π§ Get AI Recommendation", variant="primary")
|
| 576 |
+
|
| 577 |
+
with gr.Column():
|
| 578 |
+
ai_recommendation = gr.Textbox(
|
| 579 |
+
label="π‘ AI Investment Recommendation",
|
| 580 |
+
interactive=False,
|
| 581 |
+
lines=15,
|
| 582 |
+
placeholder="AI recommendations will appear here..."
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
# Example questions
|
| 586 |
+
gr.Markdown("### π‘ Example Questions:")
|
| 587 |
+
with gr.Row():
|
| 588 |
+
example1 = gr.Button("Conservative portfolio for retirement", size="sm")
|
| 589 |
+
example2 = gr.Button("Growth-focused portfolio for young investor", size="sm")
|
| 590 |
+
example3 = gr.Button("Balanced portfolio with international exposure", size="sm")
|
| 591 |
+
|
| 592 |
+
# Connect example buttons
|
| 593 |
+
example1.click(
|
| 594 |
+
lambda: "I'm 55 years old and want a conservative portfolio for retirement in 10 years. What funds should I choose?",
|
| 595 |
+
outputs=[user_query]
|
| 596 |
+
)
|
| 597 |
+
example2.click(
|
| 598 |
+
lambda: "I'm 25 years old and want an aggressive growth portfolio for long-term wealth building. What's your recommendation?",
|
| 599 |
+
outputs=[user_query]
|
| 600 |
+
)
|
| 601 |
+
example3.click(
|
| 602 |
+
lambda: "I want a balanced portfolio with both US and international exposure. What allocation do you recommend?",
|
| 603 |
+
outputs=[user_query]
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
get_recommendation_btn.click(
|
| 607 |
+
fn=get_ai_recommendation_interface,
|
| 608 |
+
inputs=[user_query, risk_tolerance, investment_amount, investment_horizon],
|
| 609 |
+
outputs=[ai_recommendation]
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
# Portfolio Analysis Tab
|
| 613 |
+
with gr.Tab("π Portfolio Analysis"):
|
| 614 |
+
gr.Markdown("### Analyze Custom Portfolio Metrics")
|
| 615 |
+
|
| 616 |
+
with gr.Row():
|
| 617 |
+
with gr.Column():
|
| 618 |
+
gr.Markdown("**Enter your fund selection:**")
|
| 619 |
+
custom_funds = gr.Textbox(
|
| 620 |
+
label="Fund Tickers",
|
| 621 |
+
placeholder="e.g., VTSAX, VTIAX, VBTLX",
|
| 622 |
+
info="Comma-separated list of fund tickers"
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
custom_weights = gr.Textbox(
|
| 626 |
+
label="Allocation Weights",
|
| 627 |
+
placeholder="e.g., 50, 30, 20",
|
| 628 |
+
info="Comma-separated percentages (should sum to 100)"
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
analyze_btn = gr.Button("π Calculate Metrics", variant="primary")
|
| 632 |
+
|
| 633 |
+
with gr.Column():
|
| 634 |
+
metrics_output = gr.Textbox(
|
| 635 |
+
label="Portfolio Metrics",
|
| 636 |
+
interactive=False,
|
| 637 |
+
lines=10,
|
| 638 |
+
placeholder="Enter fund tickers and weights, then click 'Calculate Metrics'"
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
analyze_btn.click(
|
| 642 |
+
fn=calculate_metrics_interface,
|
| 643 |
+
inputs=[custom_funds, custom_weights],
|
| 644 |
+
outputs=[metrics_output]
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
# System Status Tab
|
| 648 |
+
with gr.Tab("βοΈ System Status"):
|
| 649 |
+
gr.Markdown("### AI System Status and Information")
|
| 650 |
+
|
| 651 |
+
with gr.Row():
|
| 652 |
+
with gr.Column():
|
| 653 |
+
system_status = gr.Textbox(
|
| 654 |
+
label="π€ AI System Status",
|
| 655 |
+
value=init_status,
|
| 656 |
+
interactive=False,
|
| 657 |
+
lines=3
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
market_indicators = gr.JSON(
|
| 661 |
+
label="π Current Market Indicators",
|
| 662 |
+
value=rag_system.market_indicators
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
with gr.Column():
|
| 666 |
+
gr.Markdown("""
|
| 667 |
+
### π§ AI Capabilities
|
| 668 |
+
|
| 669 |
+
**LLM Model**: Microsoft DialoGPT
|
| 670 |
+
**Embeddings**: Sentence Transformers
|
| 671 |
+
**Vector Database**: ChromaDB
|
| 672 |
+
**Data Source**: Yahoo Finance
|
| 673 |
+
|
| 674 |
+
**What the AI can help with:**
|
| 675 |
+
- Personalized portfolio recommendations
|
| 676 |
+
- Risk assessment and analysis
|
| 677 |
+
- Fund selection based on your goals
|
| 678 |
+
- Market-aware investment strategies
|
| 679 |
+
- Sector allocation suggestions
|
| 680 |
+
""")
|
| 681 |
+
|
| 682 |
+
refresh_status_btn = gr.Button("π Refresh Status", variant="secondary")
|
| 683 |
+
|
| 684 |
+
def refresh_system_status():
|
| 685 |
+
rag_system.get_market_indicators()
|
| 686 |
+
return "β
System operational", rag_system.market_indicators
|
| 687 |
+
|
| 688 |
+
refresh_status_btn.click(
|
| 689 |
+
fn=refresh_system_status,
|
| 690 |
+
outputs=[system_status, market_indicators]
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
# User Guide Tab
|
| 694 |
+
with gr.Tab("π User Guide"):
|
| 695 |
+
gr.Markdown("""
|
| 696 |
+
## How to Use the AI-Powered Mutual Fund Optimizer
|
| 697 |
+
|
| 698 |
+
### 1. π **Setup Data**
|
| 699 |
+
- Go to "Fund Data" tab and click "Fetch Fund Data"
|
| 700 |
+
- This loads real-time data and initializes the AI system
|
| 701 |
+
- Review available funds and their characteristics
|
| 702 |
+
|
| 703 |
+
### 2. π€ **Get AI Recommendations**
|
| 704 |
+
- Use the "AI Investment Advisor" tab
|
| 705 |
+
- Describe your investment goals and situation
|
| 706 |
+
- Set your risk tolerance and investment parameters
|
| 707 |
+
- Get personalized AI-powered recommendations
|
| 708 |
+
|
| 709 |
+
### 3. π **Analyze Portfolios**
|
| 710 |
+
- Use "Portfolio Analysis" for custom calculations
|
| 711 |
+
- Enter specific fund combinations and weights
|
| 712 |
+
- Get detailed risk and return metrics
|
| 713 |
+
|
| 714 |
+
### π€ **AI System Architecture**
|
| 715 |
+
|
| 716 |
+
**RAG (Retrieval-Augmented Generation)**:
|
| 717 |
+
- Real fund data stored in vector database
|
| 718 |
+
- AI retrieves relevant information for your query
|
| 719 |
+
- Generates contextual recommendations
|
| 720 |
+
|
| 721 |
+
**Components**:
|
| 722 |
+
- **LLM**: Language model for generating advice
|
| 723 |
+
- **Embeddings**: Convert fund data to vectors
|
| 724 |
+
- **Vector Database**: ChromaDB for similarity search
|
| 725 |
+
- **Real Data**: Live Yahoo Finance integration
|
| 726 |
+
|
| 727 |
+
### π‘ **Sample Queries**
|
| 728 |
+
|
| 729 |
+
- "I have $100k to invest for 15 years, what's the best allocation?"
|
| 730 |
+
- "Compare growth vs value funds for my situation"
|
| 731 |
+
- "Should I include international funds in my portfolio?"
|
| 732 |
+
- "What's the optimal bond allocation for a 40-year-old?"
|
| 733 |
+
- "How should I adjust my portfolio during market volatility?"
|
| 734 |
+
|
| 735 |
+
### β οΈ **Important Notes**
|
| 736 |
+
|
| 737 |
+
- AI recommendations are for educational purposes
|
| 738 |
+
- Always verify suggestions with financial advisors
|
| 739 |
+
- Past performance doesn't guarantee future results
|
| 740 |
+
- Consider your complete financial situation
|
| 741 |
+
- The AI learns from real fund data and market conditions
|
| 742 |
+
|
| 743 |
+
### π§ **Technical Details**
|
| 744 |
+
|
| 745 |
+
- **Data Source**: Yahoo Finance API
|
| 746 |
+
- **AI Model**: Microsoft DialoGPT (can be upgraded)
|
| 747 |
+
- **Embeddings**: Sentence Transformers all-MiniLM-L6-v2
|
| 748 |
+
- **Vector DB**: ChromaDB with persistent storage
|
| 749 |
+
- **Update Frequency**: Real-time when data is refreshed
|
| 750 |
+
""")
|
| 751 |
+
|
| 752 |
+
# Footer
|
| 753 |
+
gr.Markdown("""
|
| 754 |
+
---
|
| 755 |
+
**π€ AI-Powered**: This system uses advanced AI to analyze real market data and provide personalized investment recommendations.
|
| 756 |
+
|
| 757 |
+
**β οΈ Disclaimer**: AI recommendations are for educational purposes only. Always consult with qualified financial advisors before making investment decisions.
|
| 758 |
+
""")
|
| 759 |
+
|
| 760 |
+
# Launch the app
|
| 761 |
+
if __name__ == "__main__":
|
| 762 |
+
print("π Starting AI-Powered Mutual Fund Portfolio Optimizer...")
|
| 763 |
+
print("π€ LLM and RAG system initialized")
|
| 764 |
+
print("π Real-time Yahoo Finance data integration enabled")
|
| 765 |
+
print("π§ AI investment advisor ready")
|
| 766 |
+
|
| 767 |
+
app.launch(
|
| 768 |
+
share=True,
|
| 769 |
+
server_name="0.0.0.0",
|
| 770 |
+
show_error=True,
|
| 771 |
+
)
|